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1 The Primes contain arbitrarily long arithmetic
progressions

1.1 Introduction

In this chapter, we closely follow [7].

We start by stating the following result due to Szemerédi [13]

Theorem 1.1. Let N be a positive integer, let δ > 0 be fixed, and let k ≥ 3 be an
integer. Then there is a positive integer N0 = N0(δ, k) with the following property. If
N ≥ N0 and A ⊆ ZN is any set of cardinality at least δN , then A contains an arithmetic
progression of length k.

One can show that an equivalent form of Szemerédi’s Theorem is the following

Theorem 1.2. Let 0 < δ ≤ 1 and k ≥ 1 be fixed. Let N be a sufficiently large integer
parameter, and let f ∶ ZN → R+ be a function satisfying

0 ≤ f(x) ≤ 1

for all x ∈ ZN and
Ex∈ZN

f(x) ≥ δ.

Then we have

Ex,r∈ZN
[f(x)f(x + r)⋯f(x + (k − 1)r)] ≥ c(k, δ) − ok,δ(1)

for some constant c(k, δ) > 0 independent of N and f .

Over the years, new proofs of this statement have been developed. However, it is
believed that this statement holds even when the density of A is slowly decreasing
with N . More precisely, there is the following

Conjecture 1.3 (Erős). Let A be a set of positive integers satisfying ∑a∈A 1
a
= ∞.

Then A contains arbitrarily long arithmetic progressions.

There has been some progress towards a decreasing density of A. Namely, there is the
following result due to Gowers [3, 4]:

Theorem 1.4 (Gowers). For every positive integer k there is a constant c = c(k) > 0
such that every subset of {1, . . . ,N} of size at least N(log logN)−c contains an arith-
metic progression of length k.

The goal in this chapter will be to explain the main ideas coming into the proof of the
following long-conjectured Theorem due to Green and Tao [7].

Main Theorem 1.5 (Green-Tao). The primes contain infinitely many arithmetic
progressions of any length.
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Note that the Theorem of Gowers, despite being a fundamental breakthrough and
inspiration for this result, is still far from being applicable to all sets of similar density
as the primes.

It is in fact not much harder to show the following slightly stronger

Theorem 1.6. Let A be any subset of the primes of positive relative upper density,
i.e.

lim sup
N→∞

∣A ∩ [1,N]∣
π(N)

> 0.

Then A contains infinitely many arithmetic progressions of any length.

This is also due to Green and Tao. Note that the proofs of these Theorems do use
some arithmetic properties of primes, and can thus not be easily extended to sets of
the same (or higher) density as the primes.

1.2 Pseudorandom measures

In the following discussion N always denotes a large prime.

The fundamental notion introduced by Green and Tao to be able to transfer the prob-
lem from sets of positive densities to more general sets is the notion of pseudorandom
measures. To introduce these, we first need the following definitions:

Definition 1.7. Let ν ∶ ZN → R+ be a function (it might be more precise to call it a
sequence of functions indexed by N). ν is said to be a measure if

En∈ZN
ν(n) = 1 + o(1). (1.1)

Definition 1.8. Let ν ∶ ZN → R+ be a measure. Let (t0, d0, L0) be a triple of positive
integers. Then we say that ν satisfies the (t0, d0, L0)-linear forms condition if the
following holds:

Let 1 ≤ d ≤ d0, 1 ≤ t ≤ t0, and let (Lij)1≤i≤t,1≤j≤d be integers bounded in absolute value
by L0. Moreover, let bi ∈ Z,1 ≤ i ≤ t, and define the affine-linear forms ψi ∶ Zd → Z,

ψi(x) ∶=
d

∑
j=1

Lijxj + bi.

Then we have

En∈Zd
N
[
t

∏
i=1

ν(ψi(n))] = 1 + ot0,d0,L0(1). (1.2)

Note that every ψi induces a well-defined map ZdN → ZN .

Informally, this states that the function ν does not correlate with itself on affine-linear
forms. We will later apply this in the context of prime numbers, where ν will essentially
be concentrated on the primes. In this case, the linear forms condition essentially states
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that the events "ψj(x) is almost prime" are asymptotically independent of each other
as j varies. Note that for t = 1, this also gives the measure condition.

We just give one special case as an example. If (t0, d0, L0) is at least (4,3,1), we in
particular obtain that

Eh1,h2∈ZN
[ν(x)ν(x + h1)ν(x + h2)ν(x + h1 + h2)] = 1 + ot0,d0,L0(1).

In terms of the definitions we give in section 1.5, this asserts that the Gowers norm
U2(ZN) of ν is close to 1. Similar statements can of course be derived for higher
Gowers norms by choosing the parameters accordingly.

Definition 1.9. Let ν ∶ ZN → R+ be a measure, and let m0 be a positive integer. ν
is said to satisfy the m0-correlation condition if for every 1 ≤ m ≤ m0 there exists a
weight function τ = τm ∶ ZN → R+ satisfying

En∈ZN
[τ q(n)] ≪m,q 1 (1.3)

for all 1 ≤ q < ∞ and

En∈ZN
[
m

∏
i=1

ν(n + hi)] ≤ ∑
1≤i<j≤m

τ(hi − hj) (1.4)

for all h1, . . . , hm ∈ ZN .

This condition was, in some sense, constructed in such a way that it applies to the
primes. For a rather uniformly distributed function ν one could expect a stronger
bound on the right-hand side of the type Om(1), but the arithmetic properties of the
primes lead to slight non-uniformities. For example, the number of primes p ≤ N such
that p−h is also prime is not bounded uniformly in h by (a constant times) N/ log2N ,
as opposed to random sets of prime densities.

Definition 1.10. Let D be a positive integer. A measure ν is called D-pseudorandom
if it satisfies the (D2D−1,3D − 4,D)-linear forms and the 2D−1-correlation condition.

The next claim illustrates the so-called transference principle very well. Compare the
statement to 1.2.

Theorem 1.11. Let k ≥ 3 and 0 < δ ≤ 1 be fixed parameters. Suppose that ν ∶ ZN → R+

is k-pseudorandom. Let f ∶ ZN → R+ be a function satisfying

0 ≤ f(x) ≤ ν(x)

for all x ∈ ZN , and
Ex∈ZN

f(x) ≥ δ.

Then we have

Ex,r∈ZN
[f(x)f(x + r)⋯f(x + (k − 1)r)] ≥ c(k, δ) − ok,δ(1).
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Note that this time, f is not (necessarily) bounded by the constant function 1, but
by a special type of function that has average value 1, namely a pseudorandom mea-
sure. This general idea applies for several statements in this area, where we have a
(comparably simple) Theorem regarding bounded functions, and are able to apply it
in some way to show it for functions which are bounded by pseudorandom measures.
Of course, since the constant function 1 defines a k-pseudorandom measure for any
value of k, this is indeed more general.

The proof of this Theorem constitutes the major part of the proof of the Green-Tao
Theorem.

1.3 Notation

Notations such as the o-notation will usually be considered in the limit as N → ∞;
sometimes, we will also consider limits as certain variables go to zero, but we will
explicitly say so. Variable indices in O-, o- and ≪-notation indicate that the statement
holds when these variables are fixed.

For a given finite, non-empty set A we write ∣A∣ for its cardinality and

Ex∈A[f(x)] ∶=
1

∣A∣ ∑x∈A
f(x)

to denote its average. For N ∈ N, we write [N] ∶= {1, . . . ,N}. We denote by ZN the
cyclic group Z/NZ. We sometimes write logm, where the index will always mean the
number of iterations of the natural logarithm, not the base.

1.4 Majorising the primes by a pseudorandom measure

In this whole chapter, we view k as fixed. Any dependencies of functions or implicit
constants on k will be notationally omitted.

The goal of this section is to prove the Main Theorem 1.6 assuming Theorem 1.11 and
two other propositions from complex analysis essentially due to Goldston, Pintz and
Yıldırım, but also proved - in detail and adjusted to this setting - by Green and Tao
in [7].

To this end, let w = w(N) = log3N and W = ∏p≤w p. We define Λ̃ ∶ N→ R+,

Λ̃(n) ∶=
⎧⎪⎪⎨⎪⎪⎩

ϕ(W )
W

Λ(Wn + 1) if Wn + 1 is prime
0 else

.

Note that, from Dirichlet’s Theorem on primes in APs, Λ̃ has average value 1. The
fundamental observation now is the following

Proposition 1.12. Set εk ∶= 1/(2k(k + 4)!) and let N be a sufficiently large prime
number. Then there exists a k-pseudorandom measure ν ∶ ZN → R+ such that ν(n) ≥
k−12−k−5Λ̃(n) for all εkN ≤ n ≤ 2εkN .
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Proof of Theorem 1.5 assuming Theorem 1.11 and Proposition 1.12. Define f ∶ ZN →
R+ by f(n) ∶= k−12−k−5Λ̃(n) for εkN ≤ n ≤ 2εkN and 0 otherwise. We have

Ef = k
−12−k−5

N
∑

εkN≤n≤2εkN

Λ̃(n) = k−12−k−5εk(1 + o(1)).

By Proposition 1.12 we see that we may apply Theorem 1.11 to deduce

Ex,r∈ZN
[f(x)f(x + r)⋯f(x + (k − 1)r)] ≥ c(k, k−12−k−5εk) − o(1).

The case r = 0 can contribute at most O(logkN/N) = o(1) and may therefore be
removed. Moreover, the fact that f vanishes outside [εkN,2εkN] implies that x,x +
k, . . . , x+(k−1)r in fact defines an AP in Z, not only in ZN (if the pair (x, r) contributes
to the above expectation). The claim now follows from the definition of f via Λ̃ by
taking N sufficiently large.

We have thus reduced the Main Theorem to the two statements 1.11 and 1.12. We
start by reducing the latter in the way announced. Note that we have

Λ(n) = ∑
d ∣n

µ(d) log(n/d) = ∑
d ∣n

µ(d) log(n/d)+,

where log+ denotes the positive part max(log,0) of the logarithm. Keeping this in
mind, we can now make the following

Definition 1.13. Let R = R(N) be a parameter. We define the truncated divisor sum

ΛR(n) ∶= ∑
d ∣n
d≤R

µ(d) log(R/d) = ∑
d ∣n

µ(d) log(R/d)+. (1.5)

This enables us to define the k-pseudorandom measure which will majorise Λ̃, or more
precisely, the function f from the subsequent proof.

Definition 1.14. Let R ∶= Nk−12−k−4 and let εk be as in Proposition 1.12. Define
ν ∶ ZN → R+,

ν(n) ∶=
⎧⎪⎪⎨⎪⎪⎩

ϕ(W )
W

ΛR(Wn+1)2
logR

if εkN ≤ n ≤ 2εkN

1 else
.

We have to show several claims to prove Proposition 1.12.

(i) ν majorises f ,

(ii) ν defines a measure,

(iii) ν satisfies the (k2k−1,3k − 4, k)-linear forms condition and

(iv) ν satisfies the 2k−1-correlation condition.
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We will rely heavily on the following two propositions which are essentially due to
Goldston, Pintz and Yıldırım, and which have quite technical proofs strongly using
complex analysis.

Proposition 1.15. Let d, t be positive integers. For 1 ≤ i ≤ t, let ψi ∶ Zd → Z,

ψi(x) =
d

∑
j=1

Lijxj + bi

for some integers bi and a collection of integer coefficients ∣Lij ∣ ≤
√
w/2. Assume

that the t-tuples (Lij)j are never identically zero, and that no two of the t-tuples are
rational multiples of each other. Set θi ∶=Wψi+1, and let B = ∏t

i=1 Ii ⊂ Rt be a product
of intervals of length at least R10d. Then

Ex∈B∩Zd [ΛR(θ1(x))2⋯ΛR(θt(x))2] = (1 + od,t(1))(
W logR

ϕ(W )
)
t

. (1.6)

Proposition 1.16. Let m be a positive integer and let I be an interval of length at
least R10m. Suppose that h1, . . . , hm are distinct integers such that ∣hi∣ ≤ N2, and set

∆ ∶= ∏
1≤i<j≤m

∣hi − hj ∣.

Then for sufficiently large N = N(m) we have

Ex∈I [ΛR(W (x + h1) + 1)2⋯ΛR(W (x + hm1) + 1)2]

≤ (1 + om(1))(W logR

ϕ(W )
)
m

∏
p ∣∆

(1 +Om(p−1/2)). (1.7)

Lemma 1.17. Let f ∶= k−12−k−5Λ̃ as before. Then 0 ≤ f(x) ≤ ν(x) for all x ∈
[εkN,2εkN] if N is sufficiently large.

Proof. If Wn + 1 is not prime, the claim is trivial. If N is sufficiently large, we
may assume that Wn + 1 > R for all n ∈ [εkN,2εkN]. The truncated divisor sum
corresponding to ΛR(Wn+1) then only contains the summand d = 1, so that ΛR(Wn+
1) = logR. This implies

ν(n) = ϕ(W )
W

logR ≥ k−12−k−5Λ̃(n) = f(n)

for sufficiently large N and thus the claim.

Lemma 1.18. ν defines a measure.

Proof. We can apply Proposition 1.15 with d = t = 1, ψ1(x) = x as well as B =
[εkN,2εkN]. If N is large enough, B satisfies the assumptions of that proposition
and we obtain

Ex∈[εkN,2εkN] [ΛR(Wx + 1)2] = (1 + o(1))W logR

ϕ(W )
.

The claim follows immediately from the definition of ν.
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Lemma 1.19. ν satisfies the (k2k−1,3k − 4, k)-linear forms condition.

Proof. Clearly, we want to apply Proposition 1.15. But due to the piecewise definition,
we need to make some technical adjustments to be able to do that.

To this end, let Q = Q(N) be a function slowly growing with N to be chosen later,
and partition ZdN into Qd boxes

Bu1,...,ud
∶= {x ∈ ZdN ∶ xj ∈ [⌊ujN/Q⌋, ⌊(uj + 1)N/Q⌋), j = 1, . . . , d},

where we may view the uj as elements of ZQ. Note that the sizes of these boxes might
differ up to at most 1 in every direction. We can thus rewrite

Ex∈Zd
N
[ν(ψ1(x))⋯ν(ψt(x))] = (1 + o(1))Eu1,...,ud∈ZQ

[Ex∈Bu1,...,ud
[ν(ψ1(x))⋯ν(ψt(x))]].

If for every i = 1, . . . , t we have that ψi(Bu1,...,ud
) is either contained in or disjoint from

[εkN,2εkN] then we can already say that

Ex∈Bu1,...,ud
[ν(ψ1(x))⋯, ν(ψt(x))] = 1 + o(1),

due to Proposition 1.15 if Q grows slow enough that N/Q exceeds R10d, noting that ν
is identically 1 in the second case (regarding dependencies of implicit constants, note
that d and t are bounded by functions of k only).

If there is i such that ψi(Bu1,...,ud
) is not contained in either of the sets, then we can

still trivially bound ν by 1+ ϕ(W )
W logR

Λ2
R(θi(x)), multiply out and apply Proposition 1.15

to obtain that
Ex∈Bu1,...,ud

[ν(ψ1(x))⋯ν(ψt(x))] = O(1).
It now suffices to show that the proportion of such tuples (u1, . . . , ud) is O(1/Q) to
obtain the claim. To this end, let 1 ≤ i ≤ t as well as x,x′ ∈ Bu1,...,ud

such that
ψi(x) ∈ [εkN,2εkN], but ψi(x′) is not. We have

ψi(x) =
d

∑
j=1

Lij⌊Nuj/Q⌋ + bi +O(N/Q)

and the same for ψi(x′). Thus, we either have

εkN =
d

∑
j=1

Lij⌊Nuj/Q⌋ + bi +O(N/Q)

or the same equation holds with 2εkN (we assume the first). Dividing by N/Q gives

d

∑
j=1

Lijuj = εkQ − biQ/N +O(1).

But we assumed that (Lij)j is not identically zero, hence this equation can only be
satisfied by O(Qd−1) values of (u1, . . . , ud). This completes the proof of the linear
forms condition.
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To verify the correlation condition, we of course aim to apply Proposition 1.16. To
this end, we first need a Lemma in order to deal with the product term appearing on
its right-hand side.

Lemma 1.20. For any m ≥ 1, there is a weight function τ = τm ∶ Z → R+ such that
τ(n) ≥ 1 for all n ≠ 0 and such that for any distinct h1, . . . , hm ∈ [εkN,2εkN] we have

∏
p ∣∆

(1 +Om(p−1/2)) ≤ ∑
1≤i<j≤m

τ(hi − hj) (1.8)

with notation as in Proposition 1.16, and such that

E0<∣n∣≤N [τ q(n)] = Om,q(1)

for 1 ≤ q < ∞.

Proof. Note that we have

∏
p ∣∆

(1+Om(p−1/2)) ≤ ∏
1≤i<j≤m

∏
p ∣ ∣hi−hj ∣

(1+Om(p−1/2)) ≤ ∏
1≤i<j≤m

⎛
⎝ ∏
p ∣hi−hj

(1 + p−1/2)
⎞
⎠

Om(1)

.

The inequality of arithmetic and geometric mean implies that this (after rewriting) is
bounded by

⎛
⎝ ∏

1≤i<j≤m
( ∏
p ∣hi−hj

(1 + p−1/2))
Om(1)⎞

⎠

1/(m2 )

≤ Om(1) ∑
1≤i<j≤m

( ∏
p ∣hi−hj

(1 + p−1/2))
Om(1)

.

Setting

τm(n) ∶= Om(1)(∏
p ∣n

(1 + p−1/2))
Om(1)

(with the constants as in the last bound) implies the Lemma if we can show that for
1 ≤ q < ∞, we have

E0<∣n∣≤N[(∏
p ∣n

(1 + p−1/2))Om(q)] = Om,q(1).

One quickly verifies that for all but Om,q(1) values of p we can bound (1+p−1/2)Om(q)

by 1 + p−1/4. Moreover, we have ∏p ∣n(1 + p−1/4) ≤ ∑d ∣n d−1/4. Hence, we obtain that

E0<∣n∣≤N[(∏
p ∣n

(1 + p−1/2))Om(q)] = Om,q(1)E0<∣n∣≤N[ ∑
d ∣n

d−1/4]

= Om,q(1)
1

2N

N

∑
d=1

N

d
d−1/4 = Om,q(1),

as we wanted.
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We are now in a position to verify the correlation condition, which completes the proof
of Proposition 1.12.

Lemma 1.21. ν satisfies the 2k−1-correlation condition.

Proof. Our goal is to verify that for all 1 ≤m ≤ 2k−1 and h1, . . . , hm ∈ ZN , we have

Ex∈ZN
[ν(x + h1)⋯ν(x + hm)] ≤ ∑

1≤i<j≤m
τ(hi − hj), (1.9)

for some weight function τ = τm satisfying E[τ q] = Om,q(1). Let τ be the weight
function from Lemma 1.20, identifying ZN with (−N/2,N/2]. Note that we can still
set the value of τ(0) in any way such that the moment condition is still satisfied, so
we can define

τ(0) ∶= exp(Cm logN/ log logN)

for some absolute constant C > 0.

First assume that there are two values of hi which coincide. In that case, we can
trivially bound the left-hand side of (1.9) by ∣∣ν∣∣mL∞ , and looking at the definition of
ν, we can bound

∣∣ν∣∣L∞ ≪ logN(max
n≤N

τ(n))2
,

and because it is well-known that the maximal order of log τ(n) is log 2 logn/ log logn,
we see that for sufficiently large value of C,

∣∣ν∣∣mL∞ ≤ τ(0).

This gives the claim in the case that two hi are equal.

Now assume that all the hi are distinct. Define

g(n) ∶= ϕ(W )
W

Λ2
R(Wn + 1)

logR
1[εkN,2εkN](n).

Then we can easily bound

Ex∈ZN
[ν(x + h1)⋯ν(x + hm)] ≤ Ex∈ZN

[(1 + g(x + h1))⋯(1 + g(x + hm))].

Expanding the right-hand side gives

∑
A⊆{1,...,m}

Ex∈ZN
[∏
i∈A

g(x + hi)].

Applying Proposition 1.16 together with Lemma 1.20, we have

Ex∈ZN
[∏
i∈A

g(x + hi)] ≤ (1 + om(1)) ∑
1≤i<j≤m

τ(hi − hj)

and multiplying τ by Om(1), the claim follows.
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1.5 The Gowers norm

Definition 1.22. Let d ≥ 1, and f ∶ ZN → C be a function. For t ∈ ZN , we define the
translated function ft ∶ ZN → C,

ft(x) ∶= f(x + t).

Moreover, we define the Gowers 1-norm of f by

∣∣f ∣∣U1(ZN ) ∶= ∣Ex∈ZN
[f(x)]∣

and then the Gowers d-norm inductively by

∣∣f ∣∣Ud(ZN ) ∶= (Et∈ZN
[∣∣f ⋅ ft∣∣2

d−1
Ud−1(ZN )])

1/2d

.

Note that the Gowers 1-norm is not actually a norm.

We will, for most parts, only deal with real-valued functions, where we can ignore the
complex conjugation. We note that almost all results we present on Gowers norms also
hold in the complex-valued case, but we will not actually need to deal with complex
functions in applications and it is notationally easier to deal with the real-valued case.

We will moreover shorten ∣∣f ∣∣Us[N] ∶= ∣∣f ∣∣Us([N]).

Let d ≥ 1. We will parametrise the d-dimensional cube with side lengths h1, . . . , hd by
(ω ⋅ h)ω∈{0,1}d , where ω ⋅ h ∶= ω1h1 + ⋅ ⋅ ⋅ + ωdhd. We can then define the Gowers inner
product of complex-valued functions (fω)ω∈{0,1}d on ZN by

⟨(fω)ω∈{0,1}d⟩Ud ∶= Ex∈ZN ,h∈Zd
N
[ ∏
ω∈{0,1}d

C ∣ω∣fω(x + ω ⋅ h)] (1.10)

with ∣ω∣ = ω1 + ⋅ ⋅ ⋅ + ωd and where C denotes complex conjugation.

Lemma 1.23. The Gowers norm of a function f ∶ ZN → C can be explicitly written
as

∣∣f ∣∣Ud(ZN ) = ⟨(f)ω⟩1/2
d

Ud = Ex∈ZN ,h∈Zd
N
[ ∏
ω∈{0,1}d

C ∣ω∣f(x + ω ⋅ h)]
1/2d

. (1.11)

We leave this as an exercise to the reader; it is a simple induction argument.

Definition 1.24. In the same spirit, we can define the Ud-norm of a function f ∶ Z→
C on some finite subset A ⊂ Z by

∣∣f ∣∣Ud(A) ∶= E x∈Z,h∈Zd∶
x+ω⋅h∈A∀ω∈{0,1}d

[ ∏
ω∈{0,1}d

C ∣ω∣f(x + ω ⋅ h)]
1/2d

. (1.12)

Example 1.25. Let d = 2. For functions f00, f10, f01, f11 ∶ ZN → R we obtain

⟨f00, f10, f01, f11⟩U2 = Ex,h1,h2∈ZN
[f00(x)f10(x + h1)f01(x + h2)f11(x + h1 + h2)].
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The Gowers 2-norm of a function f is thus given by

∣∣f ∣∣U2(ZN ) = Ex,h1,h2∈ZN
[f(x)f(x + h1)f(x + h2)f(x + h1 + h2)]1/4.

It is not very hard to show that in fact we have

∣∣f ∣∣U2(ZN ) = ∣∣f̂ ∣∣L4 .

For a more specific example, define

f(x) ∶= e(ax
2 + bx + c
N

) .

Then one verifies that
∣∣f ∣∣U3(ZN ) = 1.

This is essentially because we apply Weyl differencing to the argument three times,
giving the constant phase 0. The analogous result holds for the Ud+1(ZN)-norm when
replacing the degree 2 polynomial by one of degree d.

Lemma 1.26. The Gowers norm is non-negative and, for all d ≥ 2, in fact defines a
norm.

Proof. We have

⟨(f)ω⟩Ud = Ex∈ZN ,h′∈Zd−1
N

hd∈ZN
[ ∏
ω′∈{0,1}d−1

f(x + ω′ ⋅ h′)f(x + ω′ ⋅ h′ + hd)]

= Eh′∈Zd−1
N

⎡⎢⎢⎢⎢⎣
∣Ey∈ZN

[ ∏
ω′∈{0,1}d−1

f(y + ω′ ⋅ h′)]∣
2⎤⎥⎥⎥⎥⎦

which implies the non-negativity.

Taking general inner products with the same idea, we see that

⟨(fω)ω∈{0,1}d⟩Ud = Eh′∈Zd−1
N

[Ey∈ZN
[ ∏
ω′∈{0,1}d−1

f(ω′,0)(y + ω′ ⋅ h′)]

Ey∈ZN
[ ∏
ω′∈{0,1}d−1

f(ω′,1)(y + ω′ ⋅ h′)]]

Cauchy-Schwarz inequality with respect to h′ gives

∣⟨(fω)ω∈{0,1}d⟩Ud ∣ ≤ ⟨(f(ω′,0))ω∈{0,1}d⟩
1/2
Ud ⟨(f(ω′,1))ω∈{0,1}d⟩

1/2
Ud

and inductively we obtain the Gowers-Cauchy-Schwarz inequality

∣⟨(fω)ω∈{0,1}d⟩Ud ∣ ≤ ∏
ω∈{0,1}d

∣∣fω ∣∣Ud . (1.13)
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The triangle inequality is now a direct consequence of this together with the binomial
formula: We have

∣⟨(f + g)ω⟩Ud ∣ ≤ (∣∣f ∣∣Ud + ∣∣g∣∣Ud)2d

which immediately resolves this claim. The R-linearity is clear and thus it suffices to
show the definiteness of the Gowers norm. To do this, we show the definiteness of the
Gowers 2-norm and then prove that ∣∣f ∣∣Ud−1 ≤ ∣∣f ∣∣Ud for all d ≥ 2.

To see the definiteness of the Gowers 2-norm, we can apply the Gowers-Cauchy-Schwarz
inequality with f, δa, δb, δc to obtain

Ex,h1,h2∈ZN
[f(x)δa(x + h1)δb(x + h2)δc(x + h1 + h2)] ≤ ∣∣f ∣∣U2N−C

(where C = 9/4, but that is not important here). If ∣∣f ∣∣U2 = 0, varying a, b and c over
ZN one sees that f ≡ 0 and thus ∣∣ ⋅ ∣∣U2 is definite.

We can now turn to the monotonicity property. Let f ∶ ZN → R be a function and let
fω ∶= 1 when ωd = 1 and fω ∶= f when ωd = 0. From the definition of the Gowers norm
and from the Gowers-Cauchy-Schwarz inequality we obtain

∣∣f ∣∣2
d−1
Ud−1 = ∣⟨(fω)ω∈{0,1}d⟩Ud ∣ ≤ ∣∣f ∣∣2

d−1
Ud .

This implies the claim.

We will sometimes need to transition between the Ud(ZN ′)- and Ud[N]-norms, typ-
ically for some prime N ′ ∈ [CN,2CN]. The fundamental Lemma which allows us to
do that is the following.

Lemma 1.27. Let N ′ ≥ 1 be an integer, and let 0 < α ≤ 1/2. Let I = [a, b] be an
interval of integers which satisfies αN ′ ≤ ∣I ∣ ≤ N ′/2. Let f ∶ I → R be a function on I,
and f̃ ∶ ZN ′ → R be the function obtained from f by identifying I with the corresponding
image in ZN ′ and setting it 0 otherwise. Then we have

∣∣f̃ ∣∣Ud(ZN′) = c∣∣f ∣∣Ud(I) (1.14)

for some c = c(I,N ′, d) independent of f and bounded from above and below by c′ =
c′(α, d) uniformly over I and N ′. In particular, in the above scenario when N ′ ∈
[CN,2CN] for some constant C > 0, the norms Ud(ZN ′) and Ud[N] are equivalent
and the constants in both directions can be chosen independent of N (and N ′).

We will not proceed to prove this, the proof is technical and not very interesting for
us.

Lemma 1.28. Let ν be a k-pseudorandom measure. Then we have

∣∣ν − 1∣∣Ud = o(1) (1.15)

for all 1 ≤ d ≤ k − 1.
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Proof. It suffices to prove the case d = k − 1 by monotonicity. By definition of the
Gowers norm, the claim follows if we can show that

Ex∈ZN ,h∈Zk−1
N

⎡⎢⎢⎢⎢⎣
∏

ω∈{0,1}k−1
(ν(x + ω ⋅ h) − 1)

⎤⎥⎥⎥⎥⎦
= o(1).

The assertion will now follow by expanding the product and applying the linear forms
condition to each part: The left-hand side coincides with

∑
A⊆{0,1}k−1

(−1)∣A∣Ex∈ZN ,h∈Zk−1
N

[∏
ω∈A

ν(x + ω ⋅ h)] . (1.16)

Looking at the forms (x,h1, . . . , hk−1) ↦ x + ω ⋅ h as ω ranges over {0,1}k−1, one may
easily check that none of them are rational multiples of each other (or identically
zero) and we can thus apply the linear forms condition with parameters (2k−1, k,1) to
conclude that each expectation is 1 + o(1). The claim then follows from the binomial
formula.

We can now state what was coined the "generalised von Neumann theorem" by Green
and Tao. It is a very important manifestation of the transference principle, in the
sense that it is a statement regarding functions bounded by pseudorandom measures
which was previously known only for bounded functions (see [4, Theorem 3.2]). We
will only prove the theorem in a special case, but note that the general strategy is
identical; it is merely the much heavier notation which prevents us from proving the
general statement.

Proposition 1.29. Let N(> 2) be a prime, ν ∶ ZN → R+ a k-pseudorandom measure,
and let f1, . . . , fk−1 ∶ ZN → R be functions which satisfy

∣fj(x)∣ ≤ ν(x) + 1 for all x ∈ ZN ,0 ≤ j ≤ k − 1. (1.17)

Let c0, . . . , ck−1 be a permutation of k consecutive elements of {−k+1, . . . ,0, . . . , k−1}.
Then

Ex,r∈ZN

⎡⎢⎢⎢⎣

k−1

∏
j=0

fj(x + cjr)
⎤⎥⎥⎥⎦
= O ( inf

0≤j≤k−1
∣∣fj ∣∣Uk−1(ZN )) + o(1). (1.18)

For the proof of this statement, we first need a small Lemma, for which we only sketch
the proof; the details are very simple to fill in.

Lemma 1.30. Let ν be a k-pseudorandom measure. Then ν1/2 ∶= (ν + 1)/2 is also
k-pseudorandom.

Proof. Clearly ν1/2 defines a measure. The other conditions may easily be checked by
plugging in ν1/2 in the required equations and expanding the product. In the linear
forms condition, one obtains an average of 2m terms, each of which is 1+ ot0,d0,L0 and
thus, their average satisfies this as well. In a similar spirit, the correlation condition
easily follows by expanding the corresponding product.
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Proof of the case k = 3. Note that the conclusion does not depend on the pseudoran-
dom measure ν. Thus, if we are able to show the statement for functions f with the
property

∣fj(x)∣ ≤ ν(x)

then, applying it to ν1/2 in view of Lemma 1.30 gives the above statement. Hence, we
may assume this. By reordering (and shifting), we may furthermore assume that f0

has the smallest Gowers norm and that cj = j.
We will now prove the case k = 3. Our goal is to prove

Ex,r∈ZN
[f0(x)f1(x + r)f2(x + 2r)] = O(∣∣f0∣∣U2(ZN )) + o(1). (1.19)

To this end, it is convenient to reparametrise the arithmetic progression (x,x+r, x+2r)
as (2y1 + 2y2, y2,−2y1), so that the second term does not depend on y1 and the third
term is independent of y2.

We are thus interested in bounding the quantity

J0 ∶= Ey1,y2∈ZN
[f0(2y1 + 2y2)f1(y2)f2(−2y1)] .

From the assumption on f2 we deduce

∣J0∣ ≤ Ey1∈ZN
[∣Ey2∈ZN

[f0(2y1 + 2y2)f1(y2)]∣ν(−2y1)] ,

so that Cauchy-Schwarz inequality together with the measure property of ν implies

∣J0∣ ≤ (1 + o(1))Ey1∈ZN
[∣Ey1∈ZN

[f0(2y1 + 2y2)f1(y2)]∣2]
1/2 = (1 + o(1))J1/2

1 ,

where we set

J1 ∶= Ey1,y2,y′2∈ZN
[f0(2y1 + 2y2)f0(2y1 + 2y′2)f1(y2)f1(y′2)ν(−2y1)] .

This time bounding f1 by ν, we now get

J1 ≤ Ey2,y′2∈ZN
[∣Ey1∈ZN

[f0(2y1 + 2y2)f0(2y1 + 2y′2)ν(−2y1)]∣ν(y2)ν(y′2)] .

Cauchy-Schwarz therefore implies

J1 ≤ (1 + o(1))Ey2,y′2∈ZN
[∣Ey1∈ZN

[f0(2y1 + 2y2)f0(2y1 + 2y′2)ν(−2y1)]∣2ν(y2)ν(y′2)]
1/2

Hence we have
∣J0∣ ≤ (1 + o(1))J1/4

2 ,

where we define

J2 ∶= Ey1,y′1,y2,y′2∈ZN
[f0(2y1 + 2y2)f0(2y1 + 2y′2)f0(2y′1 + 2y2)f0(2y′1 + 2y′2)

ν(−2y1)ν(−2y′1)ν(y2)ν(y′2)] .
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Reparametrising (2y1+2y2,2y
′
1+2y2,2y1+2y′2,2y

′
1+2y′2) by (2x,2(x+h1),2(x+h2),2(x+

h1 + h2)), we can write

J2 = Ex,h1,h2∈ZN
[f0(2x)f0(2(x + h1))f0(2(x + h2))f0(2(x + h1 + h2))W (x,h1, h2)]

with
W (x,h1, h2) = Ey∈ZN

[ν(−2y)ν(−2y − 2h1)ν(x − y)ν(x − y + h2)] .

Note that, since N > 2 is a prime, we have

∣∣f0∣∣4U2(ZN ) = Ex,h1,h2∈ZN
[f0(2x)f0(2(x + h1))f0(2(x + h2))f0(2(x + h1 + h2))] ,

so that it suffices to show that

Ex,h1,h2∈ZN
[f0(2x)f0(2(x + h1))f0(2(x + h2))f0(2(x + h1 + h2))(W (x,h1, h2) − 1)] = o(1).

Again bounding f0 by ν and applying Cauchy-Schwarz, we see that it suffices to verify
the following two equations:

Ex,h1,h2∈ZN
[ν(2x)ν(2(x + h1))ν(2(x + h2))ν(2(x + h1 + h2))(W (x,h1, h2) − 1)2] = o(1),

Ex,h1,h2∈ZN
[ν(2x)ν(2(x + h1))ν(2(x + h2))ν(2(x + h1 + h2))] = 1 + o(1).

After expanding the W − 1 term in the first equation, one sees that to prove these two
equations, it suffices to show

Ex,h1,h2 [ν(2x)ν(2(x + h1))ν(2(x + h2))ν(2(x + h1 + h2))W (x,h1, h2)q] = 1 + o(1)

holds for q = 0,1,2. But this is a direct consequence of the linear forms condition.

The reader may verify that for complex-valued functions, the proof works just out
in the way we want. For example when defining J1, we need a complex conjugation
precisely over those terms containing y′2. Analogously, in the definition of y2 the
number of complex conjugations of each term is exactly the number of y′i-variables
contained in that expression.

1.6 Gowers anti-uniformity

Definition 1.31. We introduce the Gowers dual norm of a function g ∶ ZN → R given
by

∣∣g∣∣Uk−1∗ (ZN ) ∶= sup{∣⟨f, g⟩∣ ∶ f ∶ ZN → R, ∣∣f ∣∣Uk−1(ZN ) ≤ 1}. (1.20)

Example 1.32. If k = 3, we have ∣∣f ∣∣U2(ZN ) = ∣∣f̂ ∣∣L4 , which quickly implies

∣∣g∣∣U2∗ (ZN ) = ∣∣ĝ∣∣L4/3

using Parseval’s identity and the duality of the L4- and L4/3-norm.
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It is immediate from the definition that for any f, g ∶ ZN → R we have

∣⟨f, g⟩∣ ≤ ∣∣f ∣∣Uk−1(ZN )∣∣g∣∣Uk−1∗ (ZN ).

We informally call a function f Gowers-uniform if its Gowers norm is small, and a
function g Gowers anti-uniform if its Gowers dual norm is not too large. From the
above inequality, we see that a function f which correlates with such a Gowers anti-
uniform function (meaning that ∣⟨f, g⟩∣ is not too small) can not be Gowers-uniform.
We will soon make this more precise, and we will see why it is important.

Definition 1.33. For a function F ∶ ZN → R, we define the Gowers dual function
DF ∶ ZN → R by

DF (x) ∶= Eh∈Zk−1
N

[ ∏
ω∈{0,1}k−1

ω≠0

F (x + ω ⋅ h)]. (1.21)

The Gowers dual of a function F which is pointwise bounded by ν + 1 for some pseu-
dorandom measure ν will be called a basic Gowers anti-uniform function.

Lemma 1.34. Let ν be a k-pseudorandom measure and let F ∶ ZN → R be a function.
Then we have

⟨F,DF ⟩ = ∣∣F ∣∣2
k−1
Uk−1(ZN ) (1.22)

and
∣∣DF ∣∣Uk−1∗ (ZN ) = ∣∣F ∣∣2

k−1−1
Uk−1(ZN ). (1.23)

If we moreover have ∣F (x)∣ ≤ ν(x) + 1 for all x ∈ ZN , i.e. DF is a basic Gowers
anti-uniform function, then we have

∣∣DF ∣∣L∞ ≤ 22k−1−1 + o(1). (1.24)

This Lemma, despite having an elementary proof, is fundamental in the approach of
Green-Tao. We will also try to express it in the informal language we established above.
Let us assume that F is a function which is bounded by ν + 1 for some pseudorandom
measure ν, as is assumed in the last claim. If F is not Gowers-uniform, then we see
from the first claim that F correlates with its Gowers-dual function, and by the third
claim we have that this function is in fact bounded. Moreover, the second assertion
gives us a way to calculate the Gowers dual norm of its Gowers dual function, which
turns out not to be too large.

Proof. The first part is very simple from the definitions:

⟨F,DF ⟩ = Ex∈ZN
[F (x)DF (x)] = Ex∈ZN ,h∈Zk−1

N
[ ∏
ω∈{0,1}k−1

F (x + ω ⋅ h)] = ∣∣F ∣∣2
k−1
Uk−1(ZN ).

For the second part, we may assume that F is not identically zero. By the first
equation, we have

∣∣DF ∣∣Uk−1∗ (ZN ) ≥ ∣⟨ F

∣∣F ∣∣Uk−1(ZN )
,DF ⟩∣ = ∣∣F ∣∣2

k−1−1
Uk−1(ZN ).
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To see the converse direction, let f be any function, and define fω ∶= f when ω = 0
and fω ∶= F otherwise. Then by the definition of the Gowers inner product and by the
Gowers-Cauchy-Schwarz inequality, we see that

∣⟨f,DF ⟩∣ = ∣⟨(fω)ω∈{0,1}k−1⟩Uk−1(ZN )∣ ≤ ∣∣f ∣∣Uk−1 ∣∣F ∣∣2
k−1−1
Uk−1(ZN ).

The definition of the Gowers dual norm implies

∣∣DF ∣∣Uk−1∗ (ZN ) ≤ ∣∣F ∣∣2
k−1−1
Uk−1(ZN )

and thus the claim.

The last part is a quick consequence of the linear forms condition. Since ∣F ∣ ≤ 2ν1/2,
the definition of D implies that it suffices to show that

Dν1/2(x) ≤ 1 + o(1)

uniformly over x ∈ ZN . But we have

Dν1/2(x) = Eh∈Zk−1
N

[ ∏
ω∈{0,1}k−1

ω≠0

ν1/2(x + ω ⋅ h)],

so that the linear forms condition of ν1/2 gives the assertion.

Recall Example 1.25; one verifies that if F is of the form e(P (x)/N) for some poly-
nomial P of degree at most k − 2, then DF = F . Such polynomial phases are in some
sense prime examples of Gowers anti-uniform functions, and in the k = 3 case (but not
for higher k) they are essentially the only examples of such functions, as one can see
using the Fourier-analytic identities of the Gowers 2-norm that we have stated. For
larger k, the Gowers norms do not seem to have any Fourier-analytic correspondences;
Green and Tao coined the techniques and ideas involving higher-order Gowers norms
the higher-order Fourier analysis.

We have defined the basic Gowers anti-uniform functions. This term already suggests
that we want to talk about more general types of such functions, namely the algebra
generated by them. This will be considered in the following proposition, which tells us
that ν − 1 (an object that is for example small in L1-norm by the measure property)
does not correlate with any polynomial in Gowers anti-uniform functions, not even
with any continuous function Φ evaluated in these anti-uniform functions.

Before stating the Proposition, we need a small

Definition 1.35. Let A,B be finite non-empty sets, and u ∶ A → B be a map. We
say that u is a uniform covering of B by A if the inverse images u−1(b) have the same
cardinality ∣B∣/∣A∣ for any b ∈ B. The fundamental property of a uniform covering is
that for any map f ∶ B → R we have

Ea∈A[f(u(a))] = Eb∈B[f(b)].
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Proposition 1.36. Let ν be a k-pseudorandom measure. Define I ∶= [−22k−1
,22k−1

],
and let K ∈ N and Φ ∶ IK → R be a fixed continuous function. Moreover, let DF1,⋯,DFK ∶
ZN → I be basic Gowers anti-uniform functions, and define ψ ∶ ZN → R,

ψ(x) ∶= Φ(DF1(x), . . . ,DFK(x)).

Then we have
⟨ν − 1, ψ⟩ = oK,Φ(1). (1.25)

Moreover, if Φ ranges over a compact set E ⊂ C(IK) (with the topology induced by
the supremum norm) then the bounds are uniform w.r.t Φ, i.e. the left-hand side is
oK,E(1).

Proof. The general idea is first to show the theorem when Φ is a polynomial and then
use the Weierstrass approximation theorem for the general case. In a similar way as
we have done before, we may assume

∣Fj(x)∣ ≤ ν(x), 1 ≤ j ≤K.

To see that this implies the statement, just apply it with this stronger assumption here
to ν1/2, and the number of extra factors two only depends on K.

Our goal now is to show the following

Lemma 1.37. Let d ∈ N, and let P ∶ IK → R be a polynomial of degree d with real
coefficients independent of N . Then we have

∣∣P (DF1, . . . ,DFK)∣∣Uk−1∗ (ZN ) = OK,d,P (1). (1.26)

Proof. By triangle inequality it suffices to show this when P is a monomial. By enlarg-
ingK to at most dK and repeating the Fj if necessary, we may assume P (x1, . . . , xK) =
x1 ⋯ xK . It hence suffices to show that

⟨f,
K

∏
j=1

DFj⟩ = OK(1)

uniformly over all f with ∣∣f ∣∣Uk−1(ZN ) ≤ 1. We can expand the left-hand side using the
definitions to obtain that

⟨f,
K

∏
j=1

DFj⟩ = Ex∈ZN
[f(x)

K

∏
j=1

Eh(j)∈Zk−1
N

[ ∏
ω∈{0,1}k−1

ω≠0

Fj(x + ω ⋅ h(j))]].

Setting h(j) = h +H(j) for any h ∈ Zk−1
N and then averaging over h, we can rewrite the

right-hand side of this as

Ex∈ZN ,h∈Zk−1
N

[f(x)
K

∏
j=1

EH(j)∈Zk−1
N

[ ∏
ω∈{0,1}k−1

ω≠0

Fj(x + ω ⋅H(j) + ω ⋅ h)]].
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We can now set

H ∶= (H(1), . . . ,H(K)) ∈ (Zk−1
N )K , ω ⋅H ∶= (ω ⋅H(1), . . . , ω ⋅H(K))

as well as

gu(1),...,u(K)(x) ∶=
K

∏
j=1

Fj(x + u(j)) for u(1), . . . , u(K) ∈ ZN

and then
f0,H ∶= f, fω,H ∶= gω⋅H (ω ≠ 0).

With these definitions, it is elementary to verify that the above expression coincides
with

EH∈(Zk−1
N

)K [⟨(fω,H)ω∈{0,1}k−1⟩Uk−1(ZN )]

which, due to the Gowers-Cauchy-Schwarz inequality, is bounded by

EH∈(Zk−1
N

)K[∣∣f ∣∣Uk−1 ∏
ω∈{0,1}k−1

ω≠0

∣∣gω⋅H ∣∣Uk−1(ZN )],

so that it suffices to show

EH∈(Zk−1
N

)K[ ∏
ω∈{0,1}k−1

ω≠0

∣∣gω⋅H ∣∣Uk−1(ZN )] = OK(1).

If we can show that
EH∈(Zk−1

N
)K [∣∣gω⋅H ∣∣2

k−1−1
Uk−1(ZN )] = OK(1)

holds for all ω ∈ {0,1}k−1, ω ≠ 0, then Hölder’s inequality implies

EH∈(Zk−1
N

)K[ ∏
ω∈{0,1}k−1

ω≠0

∣∣gω⋅H ∣∣Uk−1(ZN )] ≤ ∏
ω∈{0,1}k−1

ω≠0

EH∈(Zk−1
N

)K [∣∣gω⋅H ∣∣2
k−1−1
Uk−1(ZN )]

1/(2k−1−1)

= OK(1),

hence gives the claim. But we can apply Hölder’s inequality again to deduce that it
in fact suffices to prove that we have

EH∈(Zk−1
N

)K [∣∣gω⋅H ∣∣2
k−1
Uk−1(ZN )] = OK(1)

for any ω ∈ {0,1}k−1, ω ≠ 0. Fix such an ω, and note that H ↦ ω ⋅H defines a uniform
covering of ZKN by (Zk−1

N )K . Thus the left-hand side can be rewritten as

Eu(1),...,u(K)∈ZN
[∣∣gu(1),...,u(K) ∣∣2

k−1
Uk−1(ZN )],
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and using the definitions, we can reformulate this as

Ex,u(1),...,u(K)∈ZN ,h∈Zk−1
N

[ ∏
ω′∈{0,1}k−1

K

∏
j=1

Fj(x + u(j) + h ⋅ ω′)]

= Ex∈ZN ,h∈Zk−1
N

[
K

∏
j=1

Eu(j)∈ZN
[ ∏
ω′∈{0,1}k−1

Fj(x + u(j) + h ⋅ ω′)]].

At this point, we make use of the assumption ∣Fj ∣ ≤ ν, which reduces our claim further
to showing that

Ex∈ZN ,h∈Zk−1
N

[Eu∈ZN
[ ∏
ω′∈{0,1}k−1

ν(x + u + h ⋅ ω′)]
K

] = OK(1).

Substituting y ∶= x + u, the left-hand side reads

Eh∈Zk−1
N

[Ey∈ZN
[ ∏
ω′∈{0,1}k−1

ν(y + h ⋅ ω′)]
K

],

at which point we may apply the correlation condition to the inner expectation (this
is in fact the only point in the proof where we make use of this condition). It implies

Ey∈ZN
[ ∏
ω′∈{0,1}k−1

ν(y + h ⋅ ω′)] ≤ ∑
ω′≠ω′′∈{0,1}k−1

τ(h ⋅ (ω′ − ω′′))

for a weight function τ satisfying E[τ q] = Oq(1). Triangle inequality in LK(Zk−1
N ) gives

Eh∈Zk−1
N

[( ∑
ω′≠ω′′∈{0,1}k−1

τ(h⋅(ω′−ω′′)))
K

] ≤ ( ∑
ω′≠ω′′∈{0,1}k−1

Eh∈Zk−1
N

[τ(h⋅(ω′−ω′′))K]1/K)
K

,

so that it is in fact sufficient to see that

Eh∈Zk−1
N

[τ(h ⋅ (ω′ − ω′′))K] = OK(1)

for ω′ ≠ ω′′. But in this case, h↦ h ⋅ (ω′ −ω′′) is a uniform covering of ZN by Zk−1
N , so

the left-hand side coincides with E[τK] = OK(1).

We now turn to the general case. Let ε > 0 be arbitrary. Since the functions DFj have
image contained in the compact interval I, the Weierstrass approximation theorem
implies the existence of some polynomial P (depending only onK and ε) which satisfies

∣∣Φ(DF1, . . . ,DFK) − P (DF1, . . . ,DFK)∣∣L∞ ≤ ε.

Hence, the measure property of ν implies

∣⟨ν − 1,Φ(DF1, . . . ,DFK) − P (DF1, . . . ,DFK)⟩∣ ≤ 3ε
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for sufficiently large N . But the Lemma gives

⟨ν − 1, P (DF1, . . . ,DFK)⟩ = oK,ε(1).

Combining these two equations, we see that for sufficiently large N (depending on K
and ε), we have

∣⟨ν − 1,Φ(DF1, . . . ,DFK)⟩∣ ≤ 4ε,

which implies the claim. Now if we let Φ range over a compact, hence precompact,
set, we can cover this by finitely many balls of radius ε w.r.t. the uniform topology.
The same argument then implies the second statement.

1.7 Generalised Bohr sets and σ-algebras

Recall that a σ-algebra B over ZN is a subset of the power set P(ZN) of ZN which

• contains the empty set,

• is closed under complementation

• and under taking countable intersections.

The atoms of a σ-algebra B are the minimal non-empty elements of B w.r.t. inclusion.
These form a partition of ZN , as one may easily verify.

A function f ∶ ZN → R is said to be B-measurable if all level sets f−1(x) lie in B, or
equivalently, if f is constant on each atom of B. We define Lq(B) to be the set of
B-measurable functions equipped with the Lq-norm.

Moreover, we define the conditional expectation E[f ∣ B] ∈ L2(B) of a function f under
some σ-algebra B by

E[f ∣ B](x) ∶= Ey∈B(x)[f(y)],

where B(x) denotes the atom of B containing x. This coincides with the orthogonal
projection of f onto L2(B), i.e. the function in L2(B) which minimises the L2-distance
to f .

For a collection of σ-algebras B1, . . . ,BK , we define the join ⋁Ki=1 Bi to be the σ-algebra
whose atoms are the intersections of atoms of the Bi. This is the same as the σ-algebra
generated by B1, . . . ,BK .

Our goal now is to construct a σ-algebra, such that the measurable functions of this
σ-algebra can be approximated well by functions of the type Φ(DF1, . . . ,DFK) we
considered in Proposition 1.36. We first prove a Proposition concerning more general
functions G ∶ ZN → I as below, and then specialise to the case of basic Gowers anti-
uniform functions.

Proposition 1.38. Let ν be a k-pseudorandom measure, and let 0 < ε < 1 and 0 < η <
1/2. Moreover, let I ∶= [−22k−1

,22k−1
] and G ∶ ZN → I be a map. Then there exists a

σ-algebra Bε,η(G) with the following properties:
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(i) For any σ-algebra B, we have

∣∣G −E[G ∣ B ∨ Bε,η(G)]∣∣L∞ ≤ ε, (1.27)

(ii) Bε,η(G) is generated by at most O(1/ε) atoms and

(iii) if A denotes any atom of Bε,η(G) then there exists a continuous function ΨA ∶
I → [0,1] s.t.

∣∣(1A −ΨA ○G)(ν + 1)∣∣L1 = O(η). (1.28)

Moreover, ΨA lies in a compact set Eε,η which does not depend on N,F, ν or A.

Proof. Note that we have

∫
1

0
∑
n∈Z

Ex∈ZN
[1(G(x) ∈ [ε(n − η + α), ε(n + η + α)])(ν(x) + 1)]dα

= Ex∈ZN
[(ν(x) + 1)∫

∞

−∞
1(G(x) ∈ [−η + α, η + α])dα] = 2ηEx∈ZN

[ν(x) + 1] = O(η).

By the pigeonhole principle there thus exists 0 ≤ α ≤ 1 such that

∑
n∈Z

Ex∈ZN
[1(G(x) ∈ [ε(n − η + α), ε(n + η + α)])(ν(x) + 1)] = O(η). (1.29)

Fix such an α and define Bε,η(G) to be the σ-algebra whose atoms are given by sets
of the form G−1([ε(n+α), ε(n+α+1)]) for n ∈ Z. We may clearly assume n = O(1/ε),
since the atoms are empty otherwise; this establishes (ii).

To see that (i) is satisfied, let x ∈ ZN and y ∈ B ∨ Bε,η(G)(x) ⊆ Bε,η(G)(x) for any
σ-algebra B. Then we have

∣G(x) −G(y)∣ ≤ ε

and therefore
∣G(x) −E[G ∣ B ∨ Bε,η(G)](x)∣ ≤ ε,

which gives (i).

To establish (iii), let A be an atom of Bε,η(G), and let ψη ∶ R → [0,1] be a fixed
continuous function with ψη ≡ 1 on [η,1 − η] and ψη ≡ 0 outside of [−η,1 + η]. Then,
define

ΨA(x) ∶= ψη (
x

ε
− n − α) .

It is clear that ΨA ranges over a compact set, because we may assume n = O(1/ε) and
have α ∈ [0,1]. Now one easily verifies that

• 1A −ΨA ○G vanishes outside [−η,1 + η],
• 1A −ΨA ○G vanishes on [η,1 − η] and
• 1A −ΨA ○G is bounded by 1.

Application of (1.29) now yields the claim.
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As mentioned before, and indicated by the choice of I (and G), we want to apply this
result to basic Gowers anti-uniform functions. More precisely, we need the following

Proposition 1.39. Let ν be a k-pseudorandom measure, and let K ∈ N. Moreover, let
DF1, . . . ,DFK ∶ ZN → I be basic Gowers anti-uniform functions, and let 0 < ε < 1 and
0 < η < 1/2. Set Bε,η(DFj), j = 1, . . . ,K as constructed in the previous proposition,
and define B ∶= Bε,η(DF1)∨ ⋅ ⋅ ⋅ ∨Bε,η(DFK). Then there exists η0 = η0(ε,K) such that
for η < η0 there is N0 = N0(ε,K, η), such that for N > N0 we have

∣∣DFj −E[DFj ∣ B]∣∣L∞ ≤ ε, 1 ≤ j ≤K. (1.30)

In addition, there exists an exceptional set Ω ∈ B with

E[(ν + 1)1Ω] = OK,ε(η1/2) (1.31)

as well as
∣∣(1 − 1Ω)E[ν − 1 ∣ B]∣∣L∞ = OK,ε(η1/2). (1.32)

Proof. We only sketch the proof; essentially, this follows from an (inductive) applica-
tion of the result before. Indeed, (1.30) is immediate from (1.27).

Since each of the K σ-algebras Bε,η(DFj) is generated by O(1/ε) atoms, we have that
B is generated by OK,ε(1) atoms. An atom A of B is said to be small if

E[(ν + 1)1A] ≤ η1/2.

We define Ω to be the union of all small atoms. Clearly, Ω lies in B, and we have

E[(ν + 1)1Ω] = ∑
A small

E[(ν + 1)1A] = OK,ε(η1/2),

which is (1.31).

For the third claim, let A be a large atom (an atom which is not small). Inductive
application of Proposition 1.38 quickly implies that there is a continuous function
ΨA ∶ IK → [0,1] with the property

∣∣(ν + 1)(1A −ΨA(DF1, . . . ,DFK))∣∣L1 = OK(η),

and hence
∣∣(ν − 1)(1A −ΨA(DF1, . . . ,DFK))∣∣L1 = OK(η).

In addition, one may easily ensure that ΨA ranges over a compact set Eε,η,K inside
C(IK). Together with Proposition 1.36, we thus obtain

E[(ν − 1)ΨA(DF1, . . . ,DFK)] = oK,ε,η(1),

and after some manipulations, this implies the third claim.
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1.8 The generalised Koopman-Von Neumann Theorem and
completion of the proof

The following Proposition is the last ingredient we need in order to conclude the Main
Theorem.

Proposition 1.40 (Generalised Koopman-Von Neumann Theorem). Let ν be a k-
pseudorandom measure, and let f ∶ ZN → R+ be such that 0 ≤ f ≤ ν. Let ε > 0 be
sufficiently small, and N > N0(ε) be sufficiently large. Then there exists a σ-algebra
B and an exceptional set Ω ∈ B such that

E[ν1Ω] = oε(1), (1.33)
∣∣(1 − 1Ω)E[ν − 1 ∣ B]∣∣L∞ = oε(1), (1.34)

∣∣(1 − 1Ω)(f −E[f ∣ B])∣∣Uk−1(ZN ) ≤ ε1/2k

. (1.35)

There are several connections to ergodic theory, which we do not wish to elaborate on.
We only mention the related works [1, 2].

We will not proceed to prove this statement, but note that the proof is considerably
easier than the problem we initially faced. We omit it mainly due to its severe techni-
cality. However, we do show how Proposition 1.40 implies Theorem 1.11, and therefore,
as already mentioned, the Main Theorem 1.6 under application of Proposition 1.12.

Proof of Theorem 1.11 assuming Proposition 1.40. Let f, δ be as in 1.11, and let ε > 0
to be chosen later. Moreover, let B and Ω be as in Proposition 1.40. Define

fU ∶= (1 − 1Ω)(f −E[f ∣ B])

and
fU� ∶= (1 − 1Ω)E[f ∣ B].

We have
E[fU�] = E[(1 − 1Ω)f] ≥ E[f] −E[ν1Ω] ≥ δ − oε(1).

In addition, an application of (1.34) yields

∣∣fU� ∣∣L∞ ≤ 1 + ∣∣(1 − 1Ω)E[ν − 1 ∣ B]∣∣L∞ ≤ 1 + oε(1).

Without changing the notation, we renormalise fU� by this factor 1 + oε(1), so that
the function is bounded by 1. This preserves the property E[fU�] ≥ δ − oε(1). We
are now in a position to apply Szemerédi’s Theorem in the version of 1.2 to fU� with
δ′ = δ − oε(1) to deduce that

Ex,r∈ZN
[fU�(x)fU�(x + r)⋯fU�(x + (k − 1)r)] ≥ c(k, δ) − oε(1) − ok,δ(1).

We note that there is a small technicality here, because on the right-hand side we do
not obtain c(k, δ) but c(k, δ′). There are different ways to handle this; one can, for
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example, modify f�U by adding a constant and then dividing by the new L∞-norm in
such a way that the new function still has expectation at least δ. This is possible, and
in the end one obtains c(k, δ)− ok,δ(1)− oε(1)/(1− δ) as a lower bound for the old fU�

after substituting back, which is fine.

The idea now is to look at

Ex,r∈ZN
[f̃(x)⋯f̃(x + (k − 1)r)],

where we denote f̃ ∶= (1−1Ω)f = fU +fU� , and after expanding the product one obtains
a sum of 2k terms. The main term stems from choosing fU� in every factor, which can
be estimated by the above. The other terms contain a factor fU , and from (1.35) we
have ∣∣fU ∣∣Uk−1(ZN ) ≤ ε1/2k

. We now want to apply the von Neumann Theorem 1.29;
since (1 − 1Ω)f is bounded by ν and fU� is bounded by 1 + oε(1), we see that fU is
bounded by ν+1+oε(1). After a small renormalisation as done before (and then going
back to the old function, noting that we did not modify much), we see that

Ex,r∈ZN
[f̃(x)⋯f̃(x + (k − 1)r)] ≥ c(k, δ) −O(ε1/2k

) − oε(1) − ok,δ(1).

Now 0 ≤ (1 − 1Ω)f ≤ f , so that the same bound holds for f . But since ε > 0 was
arbitrary, the error term on the right-hand side can be made arbitrarily small by
taking N = N(k, δ) sufficiently large.
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2 Linear equations in Primes

2.1 Introduction and Main Theorem

Our main reference for this chapter is [8].

After considering arithmetic progressions in the primes, it is not far-fetched to guess
that a similar result holds for more general linear forms inside the primes. In the
following, we consider affine-linear forms ψ ∶ Zd → Z, given by

ψ(n1, . . . , nd) = a1n1 + ⋅ ⋅ ⋅ + adnd + b

for some integers a1, . . . , ad, b. We call ψ(0) = b the inhomogenous part and ψ̇ ∶=
ψ − ψ(0) the homogenous part. Moreover, we let

Ψ = (ψ1, . . . , ψt) ∶ Zd → Zt

be a system of affine-linear forms (and adapt the notation Ψ(0) and Ψ̇ in the obvious
way). To avoid degeneracies, we require that in an affine-linear system, no ψi is
constant and that no two forms are rational multiples of each other.

For a positive integer N , we further define the size ∣∣Ψ∣∣N of a system Ψ by

∣∣Ψ∣∣N ∶=
t

∑
i=1

d

∑
j=1

∣ψ̇i(ej)∣ +
t

∑
i=1

∣ψi(0)
N

∣ ,

where ej denotes the j-th unit vector. We will look at the question whether the image
of Ψ contains infinitely many prime lattice points, i.e. elements of ΨZd such that
every component is prime. When considering this problem, one will find two trivial
obstructions:

Example 2.1. Consider the system of affine linear forms Ψ ∶ Z→ Z3 given by

n↦ (n,n + 2, n + 4).

(Note that systems of this type will usually not be treatable by the methods we employ
due to the fact that it has infinite complexity). Then every point in the image has one
component divisible by 3 and can therefore not contain infinitely many prime lattice
point in its image. This is related to the prime k-tuple conjecture and the admissibility
of k-tuples:

A k-tuple of non-negative integers (a1, . . . , ak) is called admissible if there is no prime
p such that a1, . . . , ak include every residue class modulo p. For admissible k-tuples,
the prime k-tuple conjecture claims that there are infinitely many values of n such
that n + a1, . . . , n + ak is prime (we can always assume a1 = 0).

Example 2.2. Consider now, for example, the affine-linear system

(n1, n2) ↦ (n1, n2,−n1 − 2n2 + 100).
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This illustrates an even more trivial obstruction: The image contains only finitely
many points consisting only of positive components; hence it can not contain infinitely
many prime lattice points. We will however see (for some types of linear systems) that
these are the only two obstructions.

To be more precise, we will look at the number of prime lattice points in the image
of a convex body K contained in [−N,N]d under an affine-linear form Ψ, and try to
establish an asymptote as N → ∞. The reason for assuming convexity will become
apparent soon, but the reader may always think of K = [−N,N]d to have a picture
in mind. In addition, we will give weights to the prime points according to the von
Mangoldt function, a method which is used throughout analytic number theory. We
are therefore interested in estimating the expression

∑
n∈K∩Zd

∏
i∈[t]

Λ(ψi(n)) (2.1)

for some convex body K ⊆ [−N,N]d and a large integer N . As asserted by the prime
number theorem, Λ on average behaves like 1R+ , so one might compare this to the
same expression with 1R+ instead of Λ:

Lemma 2.3. Let Ψ ∶ Zd → Zt be an affine-linear form such that ∣∣Ψ∣∣N ≤ L. Then

∑
n∈K∩Zd

∏
i∈[t]

1R+(ψi(n)) = β∞ + od,t,L(Nd), (2.2)

where β∞ ∶= volRd(K ∩Ψ−1(R+)t).

We will not proceed to prove this result, mainly because it is more of a question in
convex analysis. We do want to give some heuristic explanation: One may assume that
the ψi are positive on K by intersecting it with the corresponding half planes (and
still staying a convex set therefore). We then obtain that β∞ is simply the volume of
this new set K, and we can also replace 1R+(ψi(n)) by the constant function 1 on K.
The Lemma now simply claims that

∣K ∩Zd∣ = volRd(K) + od(Nd),

which should heuristically be very plausible. In fact, it is not harder to show that the
error is Od(Nd−1), but we do not need this statement.

It turns out however that replacing Λ by 1R+ loses the arithmetic content of the
expression in question; there are local irregularities at small primes. To explain this
in detail, define for q ≥ 1 the local von Mangoldt function ΛZq ∶ Z→ R+ by

ΛZq(b) ∶=
⎧⎪⎪⎨⎪⎪⎩

q
ϕ(q) , if (b, q) = 1

0 else
.

Wit this definition, the prime number theorem in APs reads

∑
n≤N

Λ(qn + b) = ΛZq(b)N + oq(N). (2.3)
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We can now define the local factor βq by

βq ∶= En∈Zd
q
∏
i∈[t]

ΛZq(ψi(n)). (2.4)

An application of the Chinese Remainder Theorem quickly yields that the local factors
are multiplicative (in the usual sense of number theory). Moreover, we will soon see
that for large primes p, βp is close to 1 and in view of the next statement, it therefore
makes sense to speak of local irregularities at small primes.

Hardy and Littlewood conjectured (a special case of) the following

Conjecture 2.4. Let N,d, t,L be positive integers and let Ψ be a system of affine-
linear forms of size ∣∣Ψ∣∣N ≤ L. Let K ⊆ [−N,N]d be a convex set. Then we have

∑
n∈K∩Zd

∏
i∈[t]

Λ(ψi(n)) = β∞∏
p

βp + ot,d,L(Nd). (2.5)

Example 2.5. Recall example 2.1. We noted the trivial obstruction that one of the
numbers n,n+ 2, n+ 4 is always divisible by 3, or equivalently, not coprime to 3. This
implies that

β3 = En∈Z3ΛZ3(n)ΛZ3(n + 2)ΛZ3(n + 4) = 0.

The ’Main Term’ in (2.5) therefore vanishes in this case, which fits into our observation
that there are only finitely many (in fact: one) prime points in the image of this form.

Example 2.6. Recall now example 2.2. One verifies quickly that for any K ⊆
[−N,N]2, we have

β∞ ≤ volR2({(x1, x2) ∈ (R+)2 ∶ x1 + 2x2 ≤ 100}).

The right-hand side is O(1); we will soon show that the singular series ∏p βp is ab-
solutely convergent, and again we observe that in this case the ’Main Term’ is much
smaller than the error term. The global factor and the local factors are therefore able
to detect our two trivial obstructions.

We will only proceed to prove this generalised Hardy-Littlewood conjecture for a special
type of forms. To explain this more precisely, we need the notion of complexity.

Definition 2.7. Let Ψ = (ψ1, . . . , ψt) be a system of affine-linear forms. For 1 ≤ i ≤ t
and s ≥ 0, we say that Ψ has i-complexity at most s if the following condition holds:
The t − 1 forms ψj , j ≠ i can be covered by s + 1 sets such that ψi does not lie in
the affine-linear span of any class (i.e. the homogeneous part of ψi is not a linear
combination of their homogenous parts).

The complexity of Ψ is then defined to be the smallest s such that Ψ has i-comlexity
at most s for all i.

Several examples are in place to make this more vivid:
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Example 2.8. We begin with the most obvious examples: The system

(n1, . . . , nd) ↦ (n1, . . . , nd)

has complexity 0, because each form is independent of the rest. For k ≥ 2, the form

(n, r) ↦ (n,n + r, . . . , n + (k − 1)r),

which counts arithmetic progressions of length k, has complexity k − 2. This is not
hard to show: No two forms are affinely related, but every form is an affine-linear
combination of any two other forms.

Now look at the system
n↦ (n,n + 2),

which corresponds to twin primes. This is a system of infinite complexity; in fact,
a system has infinite complexity if and only if two of the forms are affinely related
(otherwise, we can always assign individual classes to each form).

Example 2.9. Let us now look at a slightly more complicated system. Let d ≥ 2 and
t ∶= 2d−1. Define

Ψ(n1, . . . , nd) ∶= (n1 + ∑
j∈A

nj)
A⊆{2,...,d}

.

This system counts (d−1)-dimensional cubes whose vertices are all prime. This system
has complexity at most d − 2. To see this, consider the form n1. We can cover the
other t−1 forms by d−1 classes by defining class i to be the set of forms which involve
ni+1. Then any affine-linear combination of forms inside the i-th class has the same
coefficient for n1 and for ni+1, and can therefore not be n1.

More generally fix any set A and look at the corresponding form ψA. Define the i-th
class to be the set of forms which have a different coefficient in front of ni+1 than ψA;
it is clear that this defines a cover of the other forms. Assume first that i+1 ∈ A. Then
all forms in class i do not involve ni+1, hence no affine-linear combination does. Thus,
ψA can not be in their affine-linear span. Now let us assume that i + 1 /∈ A. Then all
forms of the i-th class involve ni+1. But this means that any affine-linear combination
has the same coefficient for n1 and ni+1, hence never give ψA.

This implies that indeed the complexity is at most d−2. In fact, it is not hard to show
that the complexity of this system is precisely d − 2.

We are now in a position to formulate the Main Theorem of this chapter:

Main Theorem 2.10. The generalised Hardy-Littlewood conjecture 2.4 is true for all
systems of affine-linear forms of finite complexity.

In the course of the proof, we will heavily rely on two recent and very deep theorems,
namely the Gowers inverse norm theorem and the Möbius and nilsequences theorem.
Both of these theorems were formulated by Green and Tao and proved quite recently
by both of them, partially together with Ziegler [5, 6, 9–11]. We will formulate both
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statements later, and in such a way that they depend on a parameter s (we will call
the statements GI(s) and MN(s)). We will then try to illustrate the proof of the Main
Theorem for systems of complexity at most s assuming GI(s) and MN(s).

In the following, we will view t, d,L and s as fixed, and we will usually omit depen-
dencies of these variables in our notation.

Example 2.11. Let us look at arithmetic progressions of length 4. One verifies that
choosing K to be the convex set {(n1, n2) ∶ 1 ≤ n1 ≤ n1 + 3n2 ≤ N} gives β∞ = N2/6,
and that we have β2 = 4, β3 = 9/8 and βp = 1 − 3p−1

(p−1)3 for p ≥ 5. Therefore, the number
of prime quadruplets p1 < ⋅ ⋅ ⋅ < p4 ≤ N in arithmetic progression is

(1 + o(1))σ1
N2

log4N
,

where σ1 = 3
4 ∏p≥5 (1 − 3p−1

(p−1)3 ) ≈ 0.4764.

Let us now look at arithmetic progressions of length k. One verifies that the number
of primes p1 < ⋅ ⋅ ⋅ < pk ≤ N in arithmetic progressions is

(1 + o(1)) 1

2(k − 1) ∏p
βp

N2

logkN
,

where

βp =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
p
( p
p−1

)
k−1

if p ≤ k

(1 − k−1
p

) ( p
p−1

)
k−1

if p > k
.

This is heuristically very plausible: The map

(n, r) ↦ (n,n + r, . . . , n + (k − 1)r)

has two free parameters n and r. The heuristic probability that a number ≤ N is prime
is 1

logN
according to the prime number theorem. This gives us the term N2/ logkN .

Now, let us turn our attention to the multiplicative constant. If plek, then n needs
to be coprime to p and r has to be a multiple of p. The first event has probability
(p − 1)/p, while the second event has probability 1/p. Furthermore, the value of the
local von Mangoldt function in this case is p/(p−1) and appears k times, which indeed
gives us

1

p
( p

p − 1
)
k−1

.

If on the other hand p is larger than k, then n needs to be coprime to p, which again
has probability (p − 1)/p, while r needs to be chosen such that none of the numbers
n + r, . . . , n + (k − 1)r is divisible by p. An elementary number-theoretic argument
implies that this happens for precisely p−(k−1) values of r if n is coprime to p. Since
the value of the von Mangoldt function is p/(p − 1) again and appears k times, we
indeed obtain

(1 − k − 1

p
)( p

p − 1
)
k−1

.
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The factor 1
2(k−1) is the proportion of the volume inside [−N,N]2 such that the num-

bers n,n + r, . . . , n + (k − 1)r are all positive, as the reader may quickly verify. This
heuristically explains the above asymptotic.

It if important to verify that the infinite product∏p βp in fact converges for all systems
that are of interest to us:

Lemma 2.12. Let N ≥ 1, and let Ψ = (ψ1, . . . , ψt) ∶ Zd → Zt be an affine-linear system
of finite complexity such that ∣∣Ψ∣∣N ≤ L. Then we have βp = 1+O(p−2). In particular,
∏p βp converges absolutely, but it might vanish at small primes.

Proof. We may assume that p is sufficiently large depending on d, t and L. Since Ψ
has finite complexity, we have that no two of the ψi are affinely related. Writing

ψi(n) = ai1n1 + ⋅ ⋅ ⋅ + aidnd + bi,

this means that no two of the vectors (ai1, . . . , aid) are rational multiples of each other.
We will now show that for sufficiently large p, this implies that no two of the vectors
are linearly dependent over Zp (where we identify the vectors as elements of Zdp in the
obvious way).

If d = 1 and t ≥ 2, any two vectors are rational multiples of each other, so we may
exclude this case. If d = t = 1 there is nothing to show. Now assume d ≥ 2 and that
there are 1 ≤ i < j ≤ t and λ ∈ Zp such that λaik = a

j
k in Zp for all k = 1, . . . , d. Then

for any two indices k1 ≠ k2 we have aik1a
j
k2
− aik2a

j
k1

= 0 in Zp. But if p is sufficiently
large then this is an equality in Z (the vector entries are bounded by L), and the
corresponding vectors are rational multiples of each other, a contradiction.

Since we know that for sufficiently large p no two of the vectors are linearly dependent
over Zp, elementary linear algebra tells us that for any 1 ≤ i < j ≤ t the proportion of
n ∈ Zdp such that ψi(n) and ψj(n) are divisible by p is O(p−2).

It is clear that the proportion of n such that ψi(n) = 0 in Zp is precisely p−1 for any i,
since we assumed the forms to be non-constant. Now, define

Ai ∶= {n ∈ Zdp ∶ ψi(n) = 0 ∈ Zp}.

Then we have

βp = En∈Zd
p
[ ∏
i∈[t]

ΛZp(ψi(n))] =
1

pd
( p

p − 1
)
t

∣Ac1 ∩ ⋅ ⋅ ⋅ ∩Act ∣ = ( p

p − 1
)
t

(1 − ∣A1 ∪ ⋅ ⋅ ⋅ ∪At∣
pd

) .

But the Bonferroni inequalities imply that

∣A1 ∪ ⋅ ⋅ ⋅ ∪At∣ =
t

∑
i=1

∣Ai∣ +O
⎛
⎝ ∑

1≤i<j≤t
∣Ai ∩Aj ∣

⎞
⎠
.

Above, we have established that

∣Ai∣
pd

= 1

p
and

∣Ai ∩Aj ∣
pd

= O(p−2) (i < j).
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Putting everything together, this implies

βp = ( p

p − 1
)
t

(1 − tp−1 +O(p−2)) = (1 + t

p − 1
+O(p−2))(1 − t

p
+O(p−2)) = 1 +O(p−2)

as claimed.

2.2 Normal form

We are now going to reformulate our Main Theorem in a more accessible form by
introducing the normal form. We are not going to prove that it indeed reduces to the
statement we are going to formulate, because this reduction is technical and has few
arithmetic content.

Definition 2.13. Let Ψ = (ψ1, . . . , ψt) ∶ Zd → Zt be a system of affine-linear forms,
and let s ≥ 0. We say that Ψ is in s-normal form if for every i ∈ [t] there is a collection
Ji ⊆ {e1, . . . , ed} of basis vectors of cardinality ∣Ji∣ ≤ s+1 such that ∏e∈Ji ψ̇i′(e) is non-
zero for i′ = i and zero otherwise.

Informally, this means that for every ψi there is a collection of ≤ s + 1 variables such
that ψi is the only form that truly uses all of these variables. We will give some
examples to illustrate this.

Example 2.14. The system

(n, r) ↦ (n,n + r, . . . , n + (k − 1)r)

we used to parametrise arithmetic progressions of length k, has complexity k − 2, but
is not in any normal form. However, the system

(n1, . . . , nk) ↦ (n2+2n3+⋅ ⋅ ⋅+(k−1)nk,−n1+n3+⋅ ⋅ ⋅+(k−2)nk, . . . ,−(k−1)n1−⋅ ⋅ ⋅−nk−1),

which also parametrises arithmetic progressions of length k, is in k − 2 normal form.
Indeed, we can assign to ψi the set Ji = {e1, . . . , ei−1, ei+1, . . . ek}, and the i-th form is
the only one that uses all of the corresponding variables.

Example 2.15. Recall example 2.9. The system we defined there was not in s-normal
form for any s. However, the system

Ψ′(n1, . . . , nd−1, n
′
1, . . . , n

′
d−1) ∶=

⎛
⎝∑i∈A

ni + ∑
i∈[d−1]∖A

n′i
⎞
⎠
A⊆[d−1]

which also counts (d−1)-dimensional cubes, is in (d−2)-normal form. Indeed the form
corresponding to the set A is the only one which truly uses the d− 1 variables (ni)i∈A
and (n′i)i∈[d−1]∖A.
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If a system Ψ is in s-normal form, then it is easy to see that it has complexity at most
s. Fix i and consider the t − 1 forms ψ1, . . . , ψi−1, ψi+1, . . . , ψt. The s-normal form
condition associates to i a set Ji of basis vectors with the mentioned properties. To
a given basis vector e ∈ Ji we furthermore associate the collection of forms ψj which
satisfy ψ̇j(e) = 0. One verifies easily using the normal form condition that this defines
a cover of the other t − 1 forms of cardinality ∣Ji∣ ≤ s + 1. Since ψ̇i(e) ≠ 0, we obtain
that ψi can not lie in the affine linear span of any of these classes, which implies that
the i-complexity of Ψ is at most s.

We will now try to establish some kind of converse to this consideration: Namely that
every system of (finite!) complexity s admits an extension that is in s-normal form.

Definition 2.16. Let Ψ ∶ Zd → Zt be an affine-linear system. An extension of Ψ is an
affine-linear system Ψ′ ∶ Zd

′
→ Zt with d′ ≥ d such that

Ψ′Zd
′
= ΨZd

and
Ψ′(n1, . . . , nd,0, . . . ,0) = Ψ(n1, . . . , nd).

Note that the system of Example 2.15 is not an extension of the system in Example
2.9. However, their direct sum Ψ⊕Ψ′ is an extension of Ψ in (d − 1)-normal form.

Lemma 2.17. Let Ψ ∶ Zd → Zt be a system of finite complexity s. Then there exists an
extension Ψ′ ∶ Zd

′
→ Zt for some d′ = O(1), which is in s-normal form. If we moreover

have ∣∣Ψ∣∣N = O(1) then the same holds for Ψ′.

The proof is not difficult, but technical and does not really fit into our field of interest
here, so we are not going to prove it. Neither will we prove that it suffices to show
the following reduction of the Main Theorem; admittedly, this sufficiency takes some
effort to prove.

Theorem 2.18. Let N ≥ 1, s ≥ 1, and let Ψ ∶ Zd → Zt be an affine-linear system
in s-normal form (hence of complexity at most s) satisfying ∣∣Ψ∣∣N = O(1). Let K ⊆
[−N,N]d be a convex body such that ψ1, . . . , ψt > N9/10 on K. Then we have

∑
n∈K∩Zd

⎛
⎝∏i∈[t]

Λ(ψi(n)) −∏
p

βp
⎞
⎠
= o(Nd). (2.6)

We note that the global factor β∞ has not vanished into thin air: We know that
∑n∈K∩Zd∏p βp = ∏p βp∑n∈K∩Zd 1 is close to β∞∏p βp.

We also note that the exponent 9/10 is to some extent arbitrary and should not concern
the reader to much. It is not hard to see that we may assume this additional condition
ψi > N9/10 for all i, essentially because the majority of n has this property. We will
make use of this assumption later on.

Our goal now is to sketch the proof of Theorem 2.18, trying to draw parallels to the
last chapter.
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2.3 The W-trick

We have already introduced a variant of the following idea in Proposition 1.12, where
we defined the function Λ̃. The advantage of this modified von Mangoldt function is
that it is more regular than the original von Mangoldt function and therefore we could
majorise it by a pseudorandom measure. The same idea also applies here!

Definition 2.19. Let w ∶= log3N and

W ∶= ∏
p≤w

p = O(log2N).

For b ≤W, (b,W ) = 1, define

Λb,W (n) ∶= ϕ(W )
W

Λ(Wn + b).

Moreover, let Λ′ be the restriction of Λ to the primes, i.e. the function that has value
log p at a prime p and 0 otherwise. Then, set

Λ′
b,W (n) ∶= ϕ(W )

W
Λ′(Wn + b).

Again, Dirichlet’s theorem on primes in APs asserts that Λb,W (n) has average value
1 as n→∞. It is well-known and easy to see that Λ′ is close to Λ in an average sense,
which gives the same result for Λ′

b,W .

We also note that the choice of w is quite arbitrary and the proof would still work
with slightly larger w ( 1

2
log logN works), but would need stronger statements such

as the Siegel-Walfisz theorem. Since our final bounds are ineffective, we do not try to
optimise w, gaining simplicity in some arguments.

With these definitions, we are in a position to make another reduction of the Main
Theorem:

Theorem 2.20. Let N ≥ 1, s ≥ 1, and let Ψ = (ψ1, . . . , ψt) be a system of affine-linear
forms in s-normal form satisfying ∣∣Ψ∣∣N = O(1). Let K ⊆ [−N,N]d be a convex body
on which ψ1, . . . , ψt > N4/5. Then for any b1, . . . , bt ≤W which are coprime to W , we
have

∑
n∈K∩Zd

⎛
⎝∏i∈[t]

Λ′
bi,W (ψi(n)) − 1

⎞
⎠
= o(Nd). (2.7)

Proof that Theorem 2.20 implies 2.18. Let Ψ,K be as in the assumptions of Theorem
2.18, and let N be sufficiently large (we can always assume this). It clearly suffices to
prove equation (2.6) with Λ replaced by Λ′. Moreover, as already mentioned, by (2.2)
it in fact suffices to show

∑
n∈K∩Zd

∏
i∈[t]

Λ′(ψi(n)) = vold(K)∏
p

βp + o(Nd) (2.8)
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(under the assumption of Theorem 2.20). Note that we have

log ∏
p>w

βp = ∑
p>w

O(p−2) → 0

as N →∞. This implies

∏
p

βp = (1 + o(1)) ∏
p≤w

βp = (1 + o(1))βW

using the multiplicativity of the local factors. Since vold(K) = O(Nd), this implies

vold(K)∏
p

βp = vold(K)βW + o(Nd). (2.9)

Now define
A ∶= {a ∈ [W ]d ∶ (ψi(a),W ) = 1 ∀i ∈ [t]}.

We have

βW = Ea∈Zd
W
∏
i∈[t]

ΛZW
(ψi(a)) = ( W

ϕ(W )
)
t ∣A∣
W d

. (2.10)

Applying this to (2.9), we can write

vold(K)∏
p

βp = vold(K)( W

ϕ(W )
)
t ∣A∣
W d

+ o(Nd). (2.11)

Moreover, Lemma 2.12 ensures βW ≪ 1, and together with (2.10) we obtain

∣A∣ ≪ (ϕ(W )
W

)
t

W d. (2.12)

Now focusing on the other side of our equation of interest (2.8), note that

∑
n∈K∩Zd

∏
i∈[t]

Λ′(ψi(n)) = ∑
a∈[W ]d

∑
n∈Zd

Wn+a∈K

∏
i∈[t]

Λ′(ψi(Wn + a)). (2.13)

But if a /∈ A then there is some i ∈ [t] such that (ψi(Wn+a),W ) = (ψi(a),W ) ≠ 1. By
assumption, we have ψi(Wn+a) > N4/5 forWn+a ∈K, which gives Λ′(ψi(Wn+a)) = 0
in this case. Hence, the sum may just range over a ∈ A. Using simple Euclidean
division, we can then write

ψi(Wn + a) =Wψ̃i,a(n) + bi(a),

where 0 < bi(a) <W is coprime to W and where ψ̃i,a(0) = O(N/W ). With this notion,
we have derived

Λ′(ψi(Wn + a)) = W

ϕ(W )
Λ′
bi(a),W (ψ̃i,a(n)).
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Plugging this into the right-hand side of (2.13), we obtain

∑
n∈K∩Zd

∏
i∈[t]

Λ′(ψi(n)) = ( W

ϕ(W )
)
t

∑
a∈A

∑
n∈Zd

Wn+a∈K

∏
i∈[t]

Λ′
bi(a),W (ψ̃i,a(n)). (2.14)

We are now in a position to apply Theorem 2.20 with Ψ̃a = (ψ̃1,a, . . . , ψ̃t,a) as well as
Ñ = N/W and K̃ = (K − a)/W for each a ∈ A; the reader may convince himself that
all assumptions are indeed satisfied. In doing so, we obtain that for all a ∈ A we have

∑
n∈Zd

Wn+a∈K

⎛
⎝∏i∈[t]

Λ′
bi(a),W (ψ̃i,a(n)) − 1

⎞
⎠
= o((N

W
)
d

) (2.15)

Inserting this into (2.14) and recalling (2.12) gives

∑
n∈K∩Zd

∏
i∈[t]

Λ′(ψi(n)) = ( W

ϕ(W )
)
t

∑
a∈A

∑
n∈Zd

Wn+a∈K

1 + o(Nd). (2.16)

But (2.2) applied to K̃ tells us that

∑
n∈Zd

Wn+a∈K

1 = vold(K)
W d

+ o((N
W

)
d

) ,

from which we can conclude, together with (2.16) and (2.12), that

∑
n∈K∩Zd

∏
i∈[t]

Λ′(ψi(n)) = vold(K)( W

ϕ(W )
)
t ∣A∣
W d

+ o(Nd). (2.17)

Comparing this to (2.11), the claim follows.

Note that the local factors are gone after passing from Λ to Λ′
b,W . Morally speaking,

the latter function is more regular with respect to small primes. This is essentially
because w grows slowly with N so that we can ignore primes p ≤ w, but it grows slow
enough so that this doesn’t change the function too much. Later, we will have to invert
this trick however, and pass from Λ′

b,W back to Λ. Note also that the right-hand side
is independent of the bi.

It is a simple task to reduce the last Theorem further to the following

Theorem 2.21. Let N ≥ 1, s ≥ 1, and let Ψ = (ψ1, . . . , ψt) be a system of affine-linear
forms in s-normal form satisfying ∣∣Ψ∣∣N = O(1). Let K ⊆ [−N,N]t be any convex body
on which ψ1, . . . , ψt > N4/5. Then for any b1, . . . , bt ≤W which are coprime to W , we
have

∑
n∈K∩Zd

∏
i∈[t]

(Λ′
bi,W (ψi(n)) − 1) = o(Nd). (2.18)

The proof that Theorem 2.21 implies Theorem 2.20 is a simple matter of expanding
the product in 2.20 after writing Λ′

bi,W
= (Λ′

bi,W
− 1) + 1 and repeatedly applying 2.21

to each summand. The details are left to the reader.
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2.4 Pseudorandom measures, and reduction of the Main Theorem
to a Gowers norm estimate

We have introduced pseudorandom measures in the last chapter, and explained that
the function Λ̃ = Λ′

1,W can be bounded by such a pseudorandom measure in Proposition
1.12. This result generalises in the following way:

Proposition 2.22. Let D > 1 be arbitrary. Then there is a constant C0 = C0(D)
such that the following holds. Let C ≥ C0, and let N ′ ∈ [CN,2CN] be a prime. Let
0 < b1, . . . , bt < W be integers coprime to W . Then there exists a D-pseudorandom
measure ν ∶ ZN ′ → R+ which obeys the pointwise bounds

1 +Λ′
b1,W (n) + ⋅ ⋅ ⋅ +Λ′

bt,W (n) ≪D,C ν(n) (2.19)

for all n ∈ [N3/5,N], where n is identified as an element of ZN ′ in the obvious manner.

We also analysed the connections of pseudorandom measures to the Gowers norm in
Proposition 1.29. The next proposition is a generalisation of this in the obvious way,
and we are not going to prove it. The further effort necessary for this form of the
Proposition is of a very technical nature and not of interest to us here.

Proposition 2.23. There are constants C1 and D (depending on our parameters
s, t, d and L) such that the following is true. Let C1 ≤ C = O(1) be arbitrary and
N ′ ∈ [CN,2CN] be a prime. Let ν ∶ ZN ′ → R+ be a D-pseudorandom measure and
suppose that f1, . . . , ft ∶ [N] → R are functions satisfying 0 ≤ ∣fi(x)∣ ≤ ν(x) for all i ∈ [t]
and x ∈ [N]. Let Ψ = (ψ1, . . . , ψt) be a system of affine-linear forms in s-normal form
such that ∣∣Ψ∣∣N ≤ L. Moreover, let K ⊆ [−N,N]d be a convex body with Ψ(K) ⊆ [N]t.
Suppose that

min
1≤j≤t

∣∣fj ∣∣Us+1[N] ≤ δ (2.20)

for some δ > 0. Then we have

∑
n∈K∩Zd

∏
i∈[t]

fi(ψi(n)) = oδ,C(Nd) + oC(δ)Nd, (2.21)

where the last o-notation is viewed in the limit as δ → 0.

This proposition allows us to reduce the Main Theorem further, and obtain a statement
about the Gowers norm of Λ′

b,W − 1 which does in fact not depend on the affine-linear
form Ψ at all anymore.

Theorem 2.24. Let N ≥ 1, s ≥ 1 and let b ≤W be coprime to W . Then we have

∣∣Λ′
b,W − 1∣∣Us+1[N] = os(1). (2.22)

Proof of the Main Theorem assuming Theorem 2.24. It suffices to establish Theorem
2.21, so let the assumptions be as in that theorem. Since ∣∣Ψ∣∣N = O(1), we may assume
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that Ψ(K) ⊆ [N]t by enlarging N by a factor of O(1) if necessary. Let D be as in
2.23, and let C = C(D) ∶= max(C0(D),C1), where C0 is as in Proposition 2.22 and
C1 is as in Proposition 2.23. Let also N ′ ∈ [CN,2CN] be a prime. Then Proposition
2.22 tells us that there is a D-pseudorandom measure ν ∶ ZN ′ → R+ such that (2.19)
holds for n ∈ [N3/5,N]. In particular, there is c > 0 (depending on C) such that
fi(n) ∶= c(Λ′

bi,W
− 1) is pointwise bounded in magnitude by ν.

Note that there is a small technicality here: this only holds for n ∈ [N3/5,N]. But if
we define fi to be 0 for smaller n, then the pointwise bound clearly holds. The reader
may verify quickly that this change does not affect the Gowers norm too much, namely
only by at most N−2/5 times some logarithmic power.

An application of Theorem 2.24 implies that the assumptions of Proposition 2.23 are
satisfied for any δ > 0, and hence the claim.

Our Main Theorem has finally become independent of any form Ψ, the parameters d, t
and L, convex bodies, global or local factors and is now ’only’ a statement concerning
the Gowers norm of a modified von Mangoldt function. Nonetheless, it is still a very
difficult result and we have to rely on two recent theorems, whose statements we try
to explain now. Their proofs were performed in [9, 11].

2.5 The inverse Gowers norm and Möbius and nilsequences
theorems

Definition 2.25. Let G be a connected, simply connected, Lie group. We define the
central series

G = G0 = G1 ⊇ G2 ⊇ G3 ⊇ . . .

by Gi+1 ∶= [G,Gi] for i ≥ 2, where the commutator group [G,H] of two (Lie) groups
G,H is the group generated by {ghg−1h−1 ∶ g ∈ G,h ∈ H}. We say that G is s-step
nilpotent if Gs+1 = {e}.
Let Γ ⊆ G be a discrete, cocompact (i.e. the quotient is compact) subgroup. Then
the quotient G/Γ is called an s-step nilmanifold. If g ∈ G then g acts on G/Γ by left
multiplication x↦ g ⋅ x.
By an s-step nilsequence we mean a sequence of the form (F (gnx))n∈N, where x ∈ G/Γ
and F ∶ G/Γ → R is a continuous function. We say that the nilsequence is 1-bounded
if ∣F ∣ ≤ 1.

Our goal is to show that the function Λ′
b,W −1 has a small Gowers norm (i.e. is Gowers

uniform). It turns out that a function which satisfies this property is not allowed to
correlate with nilsequences, a statement we will make precise now:

Proposition 2.26. Let s ≥ 1 and δ ∈ (0,1). Let G/Γ = (G/Γ, dG/Γ) be an s-step
nilmanifold with some smooth metric dG/Γ, and let ((F (gnx))n be a bounded s-step
nilsequence with Lipschitz constant at most M . Moreover, let f ∶ [N] → [−1,1] be a
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function which satisfies
En∈[N]f(n)F (gnx) ≥ δ

(i.e. f correlates with F ). Then we have

∣∣f ∣∣Us+1[N] ≫s,δ,M,G/Γ 1.

We will not prove this result; in fact, we will not use it either, but we do believe
that it fits into the framework we are discussing, and makes the central concepts more
understandable. The fundamental, and extremely deep, observation is that a converse
of this statement is true - nilsequences are the only obstruction to uniformity:

Theorem 2.27 (Inverse Gowers norm Theorem). Let δ ∈ (0,1]. Then there exists a
finite collection Ms,δ of s-step nilmanifolds with the following property. Given N ≥ 1
and f ∶ [N] → [−1,1] such that

∣∣f ∣∣Us+1[N] ≥ δ,

there is G/Γ ∈ Ms,δ and a Lipschitz, 1-bounded s-step nilsequence (F (gnx))n on it
with Lipschitz constant Os,δ(1) such that

∣En∈[N]f(n)F (gnx)∣ ≫s,δ 1. (2.23)

We will not proceed in any way to prove this Theorem. Its proof is very long and
extremely difficult, and can be considered the most fundamental new contribution
which made the proof of the Green-Tao Theorem possible.

We have just stated that any non-uniform function has to correlate with some nilse-
quence. The next theorem, also a very deep result, states that the Möbius function in
fact does not correlate with nilsequences (and is far from that). This essentially tells
us that the Möbius function in fact has a small Gowers norm. Since Number Theory
gives us a relation between the Möbius and the Von Mangoldt function, we can hope
to achieve a similar result for this function, and it is also plausible that this transfers
to a similar estimate for our modified von Mangoldt function, thus implying the Main
Theorem.

Theorem 2.28 (Möbius and nilsequences Theorem). Let G/Γ be an s-step nilman-
ifold, and let (F (gnx))n be a bounded s-step nilsequence with Lipschitz constant M .
Then for any A > 0 we have

∣En∈[N]µ(n)F (gnx)∣ ≪A,M,G/Γ,s log−AN. (2.24)

We will now see how to apply these two Theorem to deduce the Main Theorem.
We assume both the Gowers inverse norm theorem and the Möbius and nilsequences
theorem in the following discussion.
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2.6 Self-correlation estimates of the Möbius and Liouville
functions

From our last discussion, we can deduce rather quickly the following self-correlation
result of the Möbius and the Liouville function on affine-linear forms. Recall that the
Liouville function λ is the unique completely multiplicative function that is −1 on the
primes.

Proposition 2.29. Let N,d, t,L, s be positive integers, and let Ψ = (ψ1, . . . , ψt) ∶ Zd →
Zt be a system of affine-linear forms of complexity at most s such that ∣∣Ψ∣∣N ≤ L. Let
K ⊆ [−N,N]d be a convex body. Then we have

∑
n∈K∩Zd

∏
i∈[t]

µ(ψi(n)) = os(Nd) (2.25)

as well as
∑

n∈K∩Zd

∏
i∈[t]

λ(ψi(n)) = os(Nd). (2.26)

Proof. Since µ and λ are bounded by 1, we can apply the generalised von Neumann
Theorem 2.23 with ν ≡ 1, which is D-pseudorandom for any value of D (possibly
enlarging N by a factor OL(1) to ensure Ψ(K) ⊆ [N]t). It thus suffices to show

∣∣µ∣∣Us+1[N] = os(1) (2.27)

and
∣∣λ∣∣Us+1[N] = os(1). (2.28)

Now making use of the inverse Gowers norm Theorem 2.27, we can reduce the two
statements further to showing that

En≤Nµ(n)F (gnx) = os,M,δ(1) (2.29)

as well as
En≤Nλ(n)F (gnx) = os,M,δ(1) (2.30)

uniformly over G/Γ ∈ Ms,δ and 1-bounded, M -Lipschitz nilsequences (F (gnx))n≤N .
Now (2.29) is a corollary of the Möbius and nilsequences Theorem 2.28.

To deduce 2.30, note that

λ(n) = ∑
d2 ∣n

µ( n
d2

) .

For positive realX, fixedG/Γ ∈ Ms,δ and 1-boundedM -Lipschitz nilsequence (F (gnx))n≤N
on G/Γ, we thus obtain

En≤Nλ(n)F (gnx) = En≤N ∑
d2 ∣n

µ( n
d2

)F (gnx)

= ∑
d≤X

En≤N1d2 ∣nµ( n
d2

)F (gnx) + ∑
d>X

En≤N1d2 ∣nµ( n
d2

)F (gnx).
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But we have

∣ ∑
d>X

En≤N1d2 ∣nµ( n
d2

)F (gnx)∣ ≤ ∑
d>X

1

d2
= O(X−1),

so that

En≤Nλ(n)F (gnx) = ∑
d≤X

En≤N1d2 ∣nµ( n
d2

)F (gnx) +O(X−1)

= ∑
d≤X

Ek≤N/d2µ(k)F (gd
2kx) +O(X−1).

Application of the Möbius and nilsequences Theorem 2.28 with g replaced by gd
2

yields

Ek≤N/d2µ(k)F (gd
2kx) = oG/Γ,M,s(1),

hence we obtain

En≤Nλ(n)F (gnx) = oG/Γ,M,X,s(1) +O(X−1).

Next, let ε > 0 and setX ∶= 1/ε. Then by taking N sufficiently large, we can ensure that
the left-hand side is OG/Γ,M,s(ε), hence the claim, recalling that ∣Ms,δ ∣ = Os,δ(1).

2.7 The transference principle

Recall that we are trying to prove Theorem 2.24 using the Gowers inverse norm The-
orem 2.27 and the Möbius and nilsequences Theorem 2.28. Their claims seem to fit
together nicely, but looking at the assumptions, we need a function to be bounded in
order to apply 2.27. This is another instance where the transference principle comes
into place: Our next - and final - goal is to transfer the Gowers inverse norm Theorem
from a statement for bounded functions to a statement regarding functions which are
bounded by pseudorandom measures. The fundamental result in this direction is the
following

Proposition 2.30 (Relative inverse Gowers norm Theorem). For s ≥ 1, δ ∈ (0,1]
and C ≥ 20 there exists a finite collection Ms,δ,C of nilmanifolds with the following
property. Let N ≥ 1, and let N ′ ∈ [CN,2CN] be a prime. Moreover, suppose that
ν ∶ ZN ′ → R+ is an (s + 2)-pseudorandom measure and that f ∶ [N] → R is a function
satisfying ∣f(n)∣ ≤ ν(n) for all n ∈ [N] as well as

∣∣f ∣∣Us+1[N] ≥ δ.

Then there exists G/Γ ∈ Ms,δ,C together with a 1-bounded s-step nilsequence (F (gnx))n∈N
with Lipschitz constant Os,δ,C(1) such that

∣En≤Nf(n)F (gnx)∣ ≫s,δ,C 1. (2.31)
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The next Proposition tells us that the function Λ′
b,W − 1 in which we are interested

does not correlate with nilsequences. Together with the last proposition, this quickly
gives the Main Theorem.

Proposition 2.31. Let s ≥ 1, and assume the Möbius and nilsequences Theorem
MN(s). Let G/Γ be an s-step nilmanifold, and let (F (gnx))n be a bounded s-step
nilsequence with Lipschitz constant M . Let b ≤W be coprime to W . Then

En≤N(Λ′
b,W (n) − 1)F (gnx) = oM,G/Γ,s(1). (2.32)

Proof of the Main Theorem assuming Proposition 2.30 and 2.31. It suffices to estab-
lish Theorem 2.24. To this end, let C = max(C0,20), where C0 = C0(s + 2) is the
constant appearing in Proposition 2.22, and assume that the conclusion of Theorem
2.24 is false. Then we can find a subsequence of values of N going to infinity such that
∣∣Λ′

b,W − 1∣∣Us+1[N] ≥ δ for some δ ∈ (0,1].
From Proposition 2.22 we get an (s+2)-pseudorandom measure ν such that c∣Λ′

b,W (n)−
1∣ ≤ ν(n) for some c = c(s) > 0. An application of Proposition 2.30 then implies
that there is some nilmanifold G/Γ ∈ Ms,δ,C and a 1-bounded s-step nilsequence
(F (gnx))n∈N with Lipschitz constant Os,δ(1) satisfying

∣En≤N(Λ′
b,W (n) − 1)F (gnx)∣ ≫s,δ 1.

But this contradicts Proposition 2.31, hence we have the claim.

Our next goal will be to deduce Proposition 2.30, and then Proposition 2.31 gives the
Main Theorem. To infer this, we need the following structure theorem:

Proposition 2.32. Let s ≥ 1 and let N ′ ≥ N ≥ 1 be integers. Suppose that ν ∶ ZN ′ → R+

is an (s + 2)-pseudorandom measure, and that f ∶ ZN ′ → R is a function such that
∣f(n)∣ ≤ ν(n) for all n. Then we can decompose f = f1 + f2 in such a way that

∣∣f1∣∣L∞(ZN′) ≤ 1 (2.33)

and
∣∣f2∣∣Us+1(ZN′) = o(1). (2.34)

Moreover, if f is supported inside {−N, . . . ,N} for some N < N ′/10 then we can choose
f1 and f2 in a way such that their support is contained in {−2N, . . . ,2N}.

Proof. We will only prove the first part. For the second part, the idea is essentially
to multiply f, f1 and f2 by a smooth cutoff equal to 1 on {−N, . . . ,N} and vanishing
outside {−2N, . . . ,2N} and to verify that the new functions f1 and f2 still satisfy the
same properties.

In the course of the proof, we will make heavy use of Proposition 1.40. Note that we
assumed f to be non-negative in that Proposition, while we assume here that it is only
bounded in absolute value by ν. Going through the proof, one may however verify
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that we can handle the positive and the negative part of f separately, and at the end
the result quickly follows for f as well.

Note also that it suffices to show

∣∣f1∣∣∞ ≤ 1 + o(1),

since we can always transfer the o(1) part to f2, noting that ∣∣g∣∣Us+1(ZN′) ≤ ∣∣g∣∣L∞(ZN′).

Let ε > 0 be sufficiently small, N > N0(ε) sufficiently large, and write

f = f1 + f (1)
2 + f (2)

2 ,

where

f1 ∶= (1 − 1Ω)E[f ∣ B],

f
(1)
2 ∶= (1 − 1Ω)(f −E[f ∣ B]),

f
(2)
1 ∶= 1Ωf.

Then Proposition 1.40 implies

∣∣f1∣∣L∞(ZN′) ≤ 1 + oε(1)

and
∣∣f (1)

2 ∣∣Us+1(ZN′) ≤ ε1/2s+2

as well as
∣∣f (2)

2 ∣∣L1(ZN′) = oε(1).

Since we have ∣f (2)
2 ∣ ≤ ν pointwise, we obtain

∣∣f (2)
2 ∣∣2

s+1
Us+1(ZN′) = En∈ZN′ ,h∈Zs+1

N′ [f
(2)
2 (n) ∏

ω∈{0,1}s+1
ω≠0

f
(2)
2 (n + ω ⋅ h)]

≤ En∈ZN′ [∣f
(2)
2 (n)∣] sup

n∈ZN′
(Eh∈Zs+1

N′ [ ∏
ω∈{0,1}s+1

ω≠0

ν(n + ω ⋅ h)])

= ∣∣Dν∣∣L∞(ZN′)∣∣f
(2)
2 ∣∣L1(ZN′).

Now, (1.24) implies ∣∣Dν∣∣L∞(ZN′) = Os(1), and hence

∣∣f (2)
2 ∣∣Us+1(ZN′) = oε,s(1).

As a consequence, we obtain that f2 ∶= f (1)
2 + f (2)

2 satisfies

∣∣f2∣∣Us+1(ZN′) ≤ oε,s(1) + ε1/2s+2
.

For a given ε′ > 0, we can then choose ε small enough such that the second term is
< ε′/2. Then, we can choose N large enough such that the first part is < ε′/2. The
claim follows.
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We are now able to apply this result in order to deduce Proposition 2.30.

Proof of Proposition 2.30. Applying Proposition 2.32, we can write

f = f1 + f2,

where ∣∣f1∣∣L∞(ZN′) ≤ 1 and ∣∣f2∣∣Us+1(ZN′) = o(1), and where we may assume both to
have support contained in {−2N, . . . ,2N}. By the comparability of the Us+1[N] and
Us+1(ZN ′), Lemma 1.27, the assumption ∣∣f ∣∣Us+1[N] ≥ δ implies ∣∣f ∣∣Us+1(ZN′) ≫C,s δ,
and hence we also have ∣∣f1∣∣Us+1(ZN′) ≫C,s δ. Transferring this back to {−2N, . . . ,2N}
with the same Lemma, we have derived ∣∣f1∣∣Us+1({−2N,...,2N}) ≫C,s δ.

Translating {−2N, . . . ,2N} to [4N + 1], the inverse Gowers norm Theorem 2.27 gives
the existence of an s-step nilmanifold G/Γ ∈ Ms,δ,C together with a 1-bounded s-step
nilsequence (F (gnx))n∈N on G/Γ with Lipschitz constant Os,δ,C(1) such that

∣E−2N≤n≤2Nf1(n)F (gnx)∣ ≫s,δ,C 1.

At the same time we have ∣∣f2∣∣Us+1(ZN′) = o(1), and Proposition 2.26 therefore gives

∣E−2N≤n≤2Nf2(n)F (gnx)∣ = oG/Γ,s,δ,C(1).

If N ≥ N0 = N0(s, δ,C) then this implies

∣E−2N≤n≤2Nf(n)F (gnx)∣ ≫s,δ,C 1,

noting that f vanishes outside [N]. If on the other hand N < N0 = Os,δ,C(1) then
the claim is trivial: All norms on [N] are equivalent up to factor ON(1) = Os,δ,C(1)
(this is a more or less empty statement), and all functions on [N] can be expressed as
nilsequences on R/Z with Lipschitz constant ON(1) = Os,δ,C(1). In particular, we can
set F (gnx) = f(n), and then we have

∣En≤Nf(n)F (gnx)∣ = ∣∣f ∣∣2L2[N] ≫s,C,δ ∣∣f ∣∣2Us+1[N] ≫s,C,δ 1.

Summarising what we have explained up to this point, it suffices to obtain Proposition
2.31, which essentially claims that the function Λ′

b,W − 1 does not correlate with nilse-
quences. We will soon decompose the von Mangoldt function Λ into a ‘smooth’ and a
‘rough’ part. This decomposition will induce a further decomposition on the function
Λb,W , which we expect to be close to Λ′

b,W in any reasonable sense. We will then try
to separately verify that both the smooth and the rough part of Λb,W do not correlate
with nilsequences.

However, it turns out that it is only possible to bound the smooth component in its
Gowers norm, which might at first appear to be suitable for application of Proposition
2.26; but it is not a bounded function, as required. In fact, it appears to be difficult
to even bound it by a pseudorandom measure (with the idea of using some type of
transference principle for 2.26)! For this reason, we introduce the notion of averaged
nilsequences, which have more regularity, and we will be able to bound them in their
Gowers dual norm.
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Definition 2.33. Let G/Γ be an s-step nilmanifold, and letM > 0. An s-step averaged
nilsequence on G/Γ with Lipschitz constant at most M is a function F (n) of the form

F (n) = ∑
i∈I
Fi(gni xi),

where I is some finite index set, and for each i, we have that Fi(gni xi) is a bounded
s-step nilsequence on G/Γ with Lipschitz constant at most s.

The precise use of this notion will become apparent soon; essentially, it is the following
technical proposition, which we will not prove.

Proposition 2.34. Let G/Γ be an s-step nilmanifold, and let M > 0. Suppose that
(F (gnx))n∈N is a bounded s-step nilsequence on G/Γ with Lipschitz constant at most
M . Let ε ∈ (0,1) and N ≥ 1. Then we can decompose

F (gnx) = F1(n) + F2(n), (2.35)

where F1 ∶ N → [−1,1] is an averaged nilsequence on (G/Γ)2s+1−1 with Lipschitz con-
stant OM,ε,G/Γ(1) and

∣∣F1∣∣Us+1[N]∗ ≪M,ε,G/Γ 1,

while F2 ∶ N→ R satisfies
∣∣F2∣∣L∞ = O(ε).

We try to illustrate the core idea of the proof: In some way, we need to determine
what the special feature of nilmanifolds and nilsequences is.

Given a nilmanifoldG/Γ, we write (G/Γ){0,1}s+1 for the set of all 2s+1-tuples (xω)ω∈{0,1}s+1 .
We call an element of (G/Γ){0,1}s+1 an (s+ 1)-dimensional parallelepiped if it is of the
form (gn+ω⋅h)ω∈{0,1}s+1 for some g ∈ G, x ∈ G/Γ, n ∈ Z and h ∈ Zs+1.

Now the fundamental idea is that for a given vertex of such a parallelepiped, its value
is determined in a continuous way by the values of its other 2s+1 − 1 vertices. This
constraint allows one to deduce the structural properties necessary for proving the
claim.

Example 2.35. The easiest example of a nilmanifold is the torus R/Z, which is a
1-step nilmanifold. In this case, we write gnx as x + gn for g ∈ R, x ∈ R/Z and n ∈ N.
A 2-dimensional parallelepiped on the torus is an element of (R/Z)4 of the form

(x + ng, x + (n + h1)g, x + (n + h2)g, x + (n + h1 + h2)g).

Denoting the components by (y00, y10, y01, y11), one immediately sees that

y00 = y10 + y01 − y11,

meaning that one vertex of this parallelepiped is continuously determined by the other
vertices. For higher-order nilmanifolds, this is of course much more difficult to verify.
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With Proposition 2.34 in our pocket, we are now able to reduce the Main Theorem
even further; note that we have by now reduced it to showing Proposition 2.31.

Proposition 2.36. Let s ≥ 1, and let G/Γ be an s-step nilmanifold. Further, let F1(n)
be an averaged s-step nilsequence with Lipschitz constant M , and let b ≤W be coprime
to W . Suppose the dual norm bound

∣∣F1∣∣Us+1[N]∗ ≤M ′. (2.36)

Then we have
En≤N[(Λ′

b,W (n) − 1)F1(n)] = oM,M ′,G/Γ,s(1). (2.37)

Proof of the Main Theorem assuming Proposition 2.36. It suffices to establish Propo-
sition 2.31, so let F be as in that Proposition. Let ε ∈ (0,1) be arbitrary, and decompose
F as in Proposition 2.34. By Proposition 2.36, the contribution of F1 is oM,G/Γ,s,ε(1).
For the contribution of F2, we can bound

∣En≤N(Λ′
b,W (n) − 1)F2(n)∣ ≤ ∣∣F2∣∣L∞(En≤N [Λ′

b,W (n)] + 1) = O(ε)

using the Siegel-Walfisz Theorem. As a consequence, we have

En≤N(Λ′
b,W (n) − 1)F (gnx) = oM,G/Γ,s,ε(1) +O(ε),

which gives the claim.

2.8 A splitting of the Von Mangoldt function

Recall that our goal now is to establish Proposition 2.36 to show the Main Theorem,
namely

En≤N(Λ′
b,W (n) − 1)F1(n) = oM,M ′,G/Γ,s(1).

To show this, one easily verifies that it suffices to show the same statement with Λ′
b,W

replaced by Λb,W . Writing this out, our goal is to prove the following estimate:

En≤N[(ϕ(W )
W

Λb,W (Wn + b) − 1)F1(n)] = oM,M ′,G/Γ,s(1). (2.38)

Let γ = γs > 0 to be determined later, and define R ∶= Nγ . Note that we have

Λ(n) = − logR∑
s ∣n

µ(d) log d

logR
.

Next, we make a smooth decomposition x = χs(x) + χr(x) of the identity function on
R+, where χr(x) vanishes for x ≥ 1 and χs(x) vanishes for x ≤ 1/2. With this, we can
define

Λs(n) ∶= − logR∑
d ∣n

µ(d)χs ( log d

logR
) , (2.39)

Λr(n) ∶= − logR∑
d ∣n

µ(d)χr ( log d

logR
) , (2.40)
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so that Λ(n) = Λs(n) +Λr(n). It then suffices to establish the two estimates

En≤N[(ϕ(W )
W

Λs(Wn + b) − 1)F1(n)] = os,M ′(1) (2.41)

and
En≤N[ϕ(W )

W
Λr(Wn + b)F1(n)] = oM,G/Γ,s(1), (2.42)

since they imply (2.38) and therefore the Main Theorem. Let us first focus on estab-
lishing (2.41). From the dual norm bound (2.36), we obtain

∣En≤N [(ϕ(W )
W

Λs(Wn + b) − 1)F1(n)]∣ ≤ ∣∣ϕ(W )
W

Λs(Wn + b) − 1∣∣
Us+1[N]

∣∣F1∣∣Us+1[N]∗

≤M ′∣∣ϕ(W )
W

Λs(Wn + b) − 1∣∣
Us+1[N]

.

As a consequence, it is sufficient to verify that

∣∣ϕ(W )
W

Λs(Wn + b) − 1∣∣
Us+1[N]

= os(1),

which, by writing out the definition of the Us+1[N]-norm, is in turn implied by the
more general bound

∑
(n,h)∈K

∏
ω∈{0,1}s+1

(ϕ(W )
W

Λs(W (n + ω ⋅ h) + b) − 1) = o(Ns+2)

for any convex body K ⊆ [−N,N]s+2. Expanding out the product on the left-hand
side, we can reduce this further to showing that

∑
(n,h)∈K

∏
ω∈B

ϕ(W )
W

Λs(W (n + ω ⋅ h) + b) = vols+2(K) + o(Ns+2)

for any B ⊆ {0,1}s+1. Since Λs is a truncated von Mangoldt function and the nilse-
quences have disappeared in the above claim, this is accessible by much more standard
sieve theory techniques, but we note that it still needs considerable efforts. The details
can be found in appendix D of [8].

We now turn to the estimate (2.42). By the triangle inequality, it suffices to show

En≤N
ϕ(W )
W

Λr(Wn + b)F (gnx) = oM,G/Γ,s(1) (2.43)

uniformly over g, x and 1-bounded, s-step nilsequences (F (gnx))n with Lipschitz con-
stant at most M , since we can average over such nilsequences to obtain F1. We can
trivially bound ϕ(W )/W ≤ 1 and thus remove this factor. Next, we can write

En≤NΛr(Wn + b)F (gnx) =WEb<n≤Wn+b1n≡b (W )Λ
r(n)F (g(n−b)/Wx). (2.44)
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We know that the exponential map on a nilpotent Lie group is surjective, and one can
show that the Lie group is in fact divisible, i.e. for any g ∈ G and m ∈ N there exists
an element g1/m such that (g1/m)m = g. Thus, we define g′ ∶= g1/W and x′ ∶= g−b/Wx,
so that

F (g′nx′n) = F (g(n−b)/Wx).

The point is that the left-hand side is defined for any integer n. Moreover, we can
expand

1n≡ b(W ) =
1

W
∑
r(W )

e(r(n − b)
W

) .

Substituting both identities into (2.44) gives

En≤NΛr(Wn + b)F (gnx) = Eb<n≤WN+b[ ∑
r(W )

e(r(n − b)
W

)Λr(n)F (g′nx′)].

Clearly, n ↦ e(r(n − b)/W ) induces a 1-bounded, O(1)-Lipschitz nilsequence on the
1-step nilmanifold R/Z. It hence suffices to show that

WEb<n≤WN+b[Λr(n)F (gnx)] = oM,G/Γ,s(1) (2.45)

for allM -Lipschitz, 1-bounded nilequences (F (gnx))n∈N on the s-step nilmanifoldG/Γ,
noting the importance of the uniformity with respect to g, x and F . We will now show,
that in fact

Lemma 2.37.

∣ ∑
n≤N

Λr(n)F (gnx)∣ ≪M,G/Γ,s,A N log−AN (2.46)

holds for any A > 0.

Proof. By the choice of w, this easily implies (2.45). By definition of Λr, we can rewrite
and then rearrange the left-hand side as

∣ ∑
n≤N

Λr(n)F (gnx)∣ =
RRRRRRRRRRRR
∑
n≤N

∑
d ∣n

µ(d)χr ( log d

logR
)F (gnx)

RRRRRRRRRRRR

=
RRRRRRRRRRRR
∑
m≤N

∑
d≤N/m

µ(d)χr ( log d

logR
)F((gm)dx)

RRRRRRRRRRRR
.

Note that, since χr vanishes on [0,1/2], we only have a contribution from terms with
d ≥ R1/2, so that m ≤ N/R1/2. Application of the summation by parts formula and the
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Möbius and nilsequences Theorem then yields

RRRRRRRRRRRR
∑

d≤N/m
µ(d)χr ( log d

logR
)F((gm)dx)

RRRRRRRRRRRR

≤
RRRRRRRRRRRR
χr ( log(N/m)

logR
) ∑
d≤N/m

µ(d)F((gm)dx)
RRRRRRRRRRRR

+ ∣∫
N/m

1

d

dt
(χr ( log t

logR
)) ∑

1≤d≤t
µ(d)F((gm)dx)dt∣

≪A,M,G/Γ,s log(N/m) log−A(N/m) + ∫
N/m

R1/2
log−A t dt≪A

N

m
log−A(N/m).

Again, we make use of the uniformity with respect to g to apply the Möbius and
nilsequences Theorem to gm instead of g. Since m ≤ N/R1/2, one easily verifies that
log−A(N/m) ≪A log−AN . Summing the above over all m in question implies, putting
the last steps together, that

∣ ∑
n≤N

Λr(n)F (gnx)∣ ≪A,M,G/Γ,s ∑
m≤N

N

m
log−AN.

Since this holds for any A > 0, the claim follows. This concludes the proof of the Main
Theorem.

The applications of the Gowers inverse norm Theorem and of pseudorandom measures
are not limited to the von Mangoldt function (or rather the derived functions we
analysed here), but can be extended to many other types of functions as soon as one
can bound them by pseudorandom measures. One example of such an approach is [12]
(among several other papers by the same author), where one looks at the function
which counts the number of representations of an integer by a positive definite binary
quadratic form.

For a given collection f1, . . . , ft of positive definite binary quadratic forms, denoting

Rfi(n) ∶= ∣{(x, y) ∶ fi(x, y) = n}∣

one can deduce an asymptotic for the expression

En∈K∩Zd

t

∏
i=1

Rfi(ψi(n))

(note the similarities of this expression with the one in the Generalised Hardy-Littlewood
conjecture 2.4). The very basic idea is indeed to bound the representation functions
by pseudorandom measures similar to the methods we employed in this chapter.
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